版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.3.已知为等差数列,,,则等于().A. B. C. D.4.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移5.等比数列中,,则等于()A.16 B.±4 C.-4 D.46.若函数局部图象如图所示,则函数的解析式为A. B.C. D.7.若一个正四棱锥的侧棱和底面边长相等,则该正四棱锥的侧棱和底面所成的角为()A.30° B.45° C.60° D.90°8.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.9.如图,在中,,用向量,表示,正确的是A. B.C. D.10.已知,,,,那么()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.已知向量、满足:,,,则_________.13.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.14.已知等比数列、、、满足,,,则的取值范围为__________.15.若直线平分圆,则的值为________.16.在区间上,与角终边相同的角为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值:(2)求的值.18.已知函数.(1)若,求函数的值;(2)求函数的值域.19.已知为坐标原点,,,若.(Ⅰ)求函数的单调递减区间;(Ⅱ)当时,若方程有根,求的取值范围.20.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.21.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题2、A【解析】
分别计算出每个面积,相加得到答案.【详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.3、B【解析】
利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出.【详解】解:为等差数列,,,,,,,,,.故选:【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.4、B【解析】
先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【点睛】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.5、D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.6、D【解析】
由的部分图象可求得A,T,从而可得,再由,结合的范围可求得,从而可得答案.【详解】,;又由图象可得:,可得:,,,.,,又,当时,可得:,此时,可得:故选D.【点睛】本题考查由的部分图象确定函数解析式,常用五点法求得的值,属于中档题.7、B【解析】
正四棱锥,连接底面对角线,在中,为侧棱与地面所成角,通过边的关系得到答案.【详解】正四棱锥,连接底面对角线,,易知为等腰直角三角形.中点为,又正四棱锥知:底面即为所求角为,答案为B【点睛】本题考查了线面夹角的计算,意在考察学生的计算能力和空间想象力.8、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.9、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.10、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.12、.【解析】
将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.13、【解析】
根据的定义把带入即可。【详解】∵∴∵∴①∴②①-②得∴故答案为:【点睛】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。14、【解析】
设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.15、1【解析】
把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【点睛】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题16、【解析】
根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角的正弦公式化简即可求值.【详解】(1)因为且所以;(2).【点睛】本题主要考查了三角函数的化简与求值,关键是利用诱导公式、同角三角函数的基本关系以及辅助角公式来求解,属于中档题.18、(1);(2).【解析】
(1),.(2)由(1),,∴函数的值域为[1,2].19、(1)的单调减区间为;(2).【解析】试题分析:(1)根据向量点积的坐标运算得到,根据正弦函数的单调性得到单调递减区间;(2)将式子变形为.有解,转化为值域问题.解析:(Ⅰ)∵,,∴其单调递减区间满足,,所以的单调减区间为.(Ⅱ)∵当时,方程有根,∴.∵,∴,∴,∴,∴.点睛:这个题目考查了,向量点积运算,三角函数的化一公式,,正弦函数的单调性问题,三角函数的值域和图像问题.第二问还要用到了方程的零点的问题.一般函数的零点和方程的根,图象的交点是同一个问题,可以互相转化.20、(1)见解析;(2)【解析】
(1)不等式可化为:,比较与的大小,进而求出解集.(2)恒成立即恒成立,则,进而求得答案.【详解】解:(1)不等式可化为:,①当时,不等无解;②当时,不等式的解集为;③当时,不等式的解集为.(2)由可化为:,必有:,化为,解得:.【点睛】本题考查含参不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路工程机械加盟合同
- 服装行业合伙协议范本
- 政府专项贷款合同模板
- 共同经营电子产品商店协议书范本
- 账户监管协议书范例
- 标准范本:2024年购销合同协议书
- 2024年商品买卖合同范例
- 现代室内装潢设计合同范本
- 个人住房装修合同2024年
- 陕西省汉中市普通高中十校联盟2024年秋季学期高一年级期中考试语文试题
- 2024年采矿权转让合同范本
- 双手向前投掷实心球 课件
- 第六章 回归分析课件
- 医务人员职业暴露预防及处理课件(完整版)
- 期中阶段性练习(一~四单元)(试题)-2024-2025学年五年级上册数学苏教版
- 医疗设备供货安装调试培训、售后组织方案
- 期中考试模拟试卷 2024-2025学年人教版数学九年级上册
- 朝鲜半岛局势演变
- 2024年云南德宏州州级事业单位选调工作人员历年高频难、易错点500题模拟试题附带答案详解
- 2024年秋新鲁科版三年级上册英语课件 Unit 6 lesson 1
- 英语国家概况-Chapter10-government解析
评论
0/150
提交评论