甘肃省天水第一中学2023年数学高一第二学期期末调研模拟试题含解析_第1页
甘肃省天水第一中学2023年数学高一第二学期期末调研模拟试题含解析_第2页
甘肃省天水第一中学2023年数学高一第二学期期末调研模拟试题含解析_第3页
甘肃省天水第一中学2023年数学高一第二学期期末调研模拟试题含解析_第4页
甘肃省天水第一中学2023年数学高一第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,那么等于()A. B. C. D.52.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等3.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.34.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.5.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.6.已知集合,则()A. B. C. D.7.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.8.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.9.若平面向量,满足,,且,则等于()A. B. C.2 D.810.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在边长为的菱形中,,为中点,则______.12.在数列中,,则______________.13.在等比数列中,,的值为________14.化简:.15.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)16.在等腰中,为底边的中点,为的中点,直线与边交于点,若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.18.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.19.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.20.已知圆的方程为.(1)求过点且与圆相切的直线的方程;(2)直线过点,且与圆交于两点,若,求直线的方程;(3)是圆上一动点,,若点为的中点,求动点的轨迹方程.21.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

因为,所以,故选B.2、A【解析】

根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.3、C【解析】

利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.4、B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.5、A【解析】

根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.6、A【解析】

由,得,然后根据集合的交集运算,即可得到本题答案.【详解】因为,所以.故选:A【点睛】本题主要考查集合的交集运算及对数不等式.7、C【解析】

得到圆心距与半径和差关系得到答案.【详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.8、D【解析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.9、B【解析】

由,可得,再结合,展开可求出答案.【详解】由,可知,展开可得,所以,又,,所以.故选:B.【点睛】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.10、B【解析】

令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.12、20【解析】

首先根据已知得到:是等差数列,公差,再计算即可.【详解】因为,所以数列是等差数列,公差..故答案为:【点睛】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.13、【解析】

根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.14、0【解析】原式=+=-sinα+sinα=0.15、①③【解析】

由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.16、;【解析】

题中已知等腰中,为底边的中点,不妨于为轴,垂直平分线为轴建立直角坐标系,这样,我们能求出点坐标,根据直线与求出交点,求向量的数量积即可.【详解】如上图,建立直角坐标系,我们可以得出直线,联立方程求出,,即填写【点睛】本题中因为已知底边及高的长度,所有我们建立直角坐标系,求出相应点坐标,而作为F点的坐标我们可以通过直线交点求出,把向量数量积通过向量坐标运算来的更加直观.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【点睛】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.18、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.19、(Ⅰ)证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据,知与确定一个平面,连接,得到,,从而平面,证得.(Ⅱ)设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:(Ⅰ)证明:因,所以与确定平面.连接,因为为的中点,所以,同理可得.又,所以平面,因为平面,所以.(Ⅱ)设的中点为,连.在中,因为是的中点,所以,又,所以.在中,因为是的中点,所以,又,所以平面平面,因为平面,所以平面.【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.20、(1)和;(2)或;(3)【解析】

(1)分斜率存在和不存在两种情况讨论,利用直线与圆相切时,圆心到直线的距离等于半径求解;(2)根据弦长,可求圆心到直线的距离,利用距离公式,可求直线斜率;(3)利用求轨迹方程的方法(代入法)求解.【详解】(1)当斜率不存在时,过点的方程是与圆相切,满足条件,当斜率存在时,设直线方程:,直线与圆相切时,,解得:,.所以,满足条件的直线方程是或.(2)设直线方程:,设圆心到直线的距离,,解得或,所以满足条件的直线方程是或.(3)设,那么,将点代入圆,可得.【点睛】本题考查了直线与圆相切,相交的问题,属于基础题型,这类求直线的问题,需分斜率不存在和存在两种情况讨论,当直线与圆相切时,利用圆心到直线的距离等于半径求解,当直线与圆相交时,可利用弦长公式和圆心到直线的距离求解直线方程.21、(1)证明见解析(2)证明见解析【解析】

(1)证明EF∥CD,然后利用直线与平面平行的判断定理证明EF∥平面ACD;(2)证明BD⊥平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论