版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.2.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.3.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.4.根据如下样本数据x
3
4
5
6
7
8
y
可得到的回归方程为,则()A. B. C. D.5.已知正数组成的等比数列的前8项的积是81,那么的最小值是()A. B. C.8 D.66.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,867.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.18.矩形ABCD中,,,则实数()A.-16 B.-6 C.4 D.9.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.10.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,某人在高出海平面方米的山上P处,测得海平面上航标A在正东方向,俯角为,航标B在南偏东,俯角,且两个航标间的距离为200米,则__________米.12.在数列an中,a1=2,a13.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.14.已知函数,若,且,则__________.15.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.16.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.18.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,19.在正△ABC中,AB=2,(t∈R).(1)试用,表示:(2)当•取得最小值时,求t的值.20.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.21.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.2、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.3、C【解析】
利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.4、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;5、A【解析】
利用等比数列的通项公式和均值不等式可得结果.【详解】由由为正项数列,可知再由均值不等式可知所以(当且仅当时取等号)故选:A【点睛】本题主要考查等比数列的通项公式及均值不等式,属基础题.6、B【解析】
根据茎叶图的数据,选择对应的众数和中位数即可.【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.7、B【解析】
直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.8、B【解析】
根据题意即可得出,从而得出,进行数量积的坐标运算即可求出实数.【详解】据题意知,,,.故选:.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于容易题.9、B【解析】
首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题10、A【解析】
根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出的值.【详解】航标在正东方向,俯角为,由题意得,.航标在南偏东,俯角为,则有,.所以,;由余弦定理知,即,可求得(米.故答案为:1.【点睛】本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题.12、2+【解析】
因为a1∴a∴=(=2+ln13、二【解析】
由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.14、2【解析】不妨设a>1,
则令f(x)=|loga|x-1||=b>0,
则loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.15、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、.【解析】
设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解析】
(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解;(2)注意到时,利用基本不等式取不到等号,转而利用双勾函数的单调性求解.【详解】(1)由题意可知,汽车从地到地所用时间为小时,全程成本为,.当,时,,当且仅当时取等号,所以,汽车应以的速度行驶,能使得全程行驶成本最小;(2)当,时,,由双勾函数的单调性可知,当时,有最小值,所以,汽车应以的速度行驶,才能使得全程运输成本最小.【点睛】本题考查基本不等式的应用,解题的关键就是建立函数模型,得出函数解析式,并通过基本不等式进行求解,考查学生数学应用能力,属于中等题.19、(1)(2)【解析】
(1)根据即可得出,从而解得;(2)由(1)得,根据得,从而进行数量积的运算得出,配方即可得出当时,取最小值.【详解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴时,取最小值.【点睛】本题考查向量减法、加法的几何意义,向量的数乘运算,以及向量的数量积运算及计算公式,配方法解决二次函数问题的方法,属于基础题.20、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.21、(1)a=0.06,平均值为12.25小时(2)【解析】
(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加工车间年度个人工作总结(23篇)
- 装饰公司股份转让合同书(3篇)
- 广东省广外实验2024-2025学年高二上学期10月月考 数学试题含答案
- 幼儿园师德师风论坛活动方案策划
- 江苏省苏州市(2024年-2025年小学五年级语文)统编版期末考试((上下)学期)试卷及答案
- 2024年BOD自动在线监测仪项目投资申请报告代可行性研究报告
- 2024-2025学年重庆乌江新高考协作体高三上学期二调英语试题及答案
- 上海市市辖区(2024年-2025年小学五年级语文)人教版综合练习(下学期)试卷及答案
- 2024年甘肃公务员考试申论试题(县乡卷)
- 垃圾误时投放
- 2023~2024学年度上期高中2022级期中联考数学参考答案及评分标准
- 初一年级班级日志记载表(详)
- 小学道德与法治-10《吃饭有讲究》教学设计学情分析教材分析课后反思
- 房地产多项目开发一级计划里程碑-甘特图(横道图)
- 圆筒混料机-设计说明书
- 地下室顶板后浇带加固方案(钢管及工字钢)
- 处方点评工作表
- 第四单元《逻辑的力量》一等奖创新教案-高中语文统编版选择性必修上册
- 基地园区网络方案建议书
- 安徽财经大学班主任工作考核表
- 价值流PSI拉动畅流
评论
0/150
提交评论