




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,,.若公差为某一自然数,则n的所有可能取值为()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,702.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.直线是圆在处的切线,点是圆上的动点,则点到直线的距离的最小值等于()A.1 B. C. D.24.若直线经过点,则此直线的倾斜角是()A. B. C. D.5.若函数,则()A.9 B.1 C. D.06.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱7.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的8.数列,…的一个通项公式是()A.B.C.D.9.已知是两条异面直线,,那么与的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直10.平面向量与的夹角为,,,则A. B.12 C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是____________.12.若,则__________.13.已知向量(1,2),(x,4),且∥,则_____.14.(理)已知函数,若对恒成立,则的取值范围为.15.已知,函数的最小值为__________.16.若,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中0为原点。(1)求证:的面积为定值;(2)设直线与圆C交于点M,N,若,求圆C的方程.18.已知,其中,求:(1);;(2)与的夹角的余弦值.19.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E为PD的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.20.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.21.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由等差数列的通项公式得,公差,所以,可能为,的所有可能取值为选.考点:1.等差数列及其通项公式;2.数的整除性.2、C【解析】
由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.3、D【解析】
先求得切线方程,然后用点到直线距离减去半径可得所求的最小值.【详解】圆在点处的切线为,即,点是圆上的动点,圆心到直线的距离,∴点到直线的距离的最小值等于.故选D.【点睛】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题.4、D【解析】
先通过求出两点的斜率,再通过求出倾斜角的值。【详解】,选D.【点睛】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。5、B【解析】
根据的解析式即可求出,进而求出的值.【详解】∵,∴,故,故选B.【点睛】本题主要考查分段函数的概念,以及已知函数求值的方法,属于基础题.6、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.7、B【解析】
逐一分析选项,得到答案.【详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【点睛】本题考查了向量的基本概念,属于基础题型.8、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.9、C【解析】
由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【点睛】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.10、D【解析】
根据,利用向量数量积的定义和运算律即可求得结果.【详解】由题意得:,本题正确选项:【点睛】本题考查向量模长的求解,关键是能够通过平方运算将问题转化为平面向量数量积的求解问题,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.12、;【解析】
易知的周期为,从而化简求得.【详解】的周期为,且,又,.故答案为:【点睛】本题考查了正弦型函数的周期以及利用周期求函数值,属于基础题.13、.【解析】
根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、5【解析】
变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.16、【解析】故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)或【解析】
(1)先计算半径,得到圆方程,再计算AB坐标,计算的面积得到答案.(2)根据计算得到答案.【详解】(1),过原点取取为定值.(2)设直线与圆C交于点M,N,若设中点为,连接圆心在上圆C的方程为:或【点睛】本题考查了三角形面积,直线和圆的位置关系,意在考查学生的计算能力.18、(1)10;(2)【解析】试题分析:(1)本题考察的是平面向量的数量积和向量的模.先根据是相互垂直的单位向量表示出要用的两个向量,然后根据向量的数量积运算和向量模的运算即可求出答案.(2)本题考察的是平面向量的夹角余弦值,可以通过向量的数量积公式表示出夹角的余弦值.先求出向量的模长,然后根据(1)求出的的数量积代入公式,即可求出答案.试题解析:(1),.∴|.(2)考点:平面向量数量积的坐标表示、模和夹角.19、(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得点G的坐标,然后结合平面的法向量和直线AG的方向向量可判断直线是否在平面内.【详解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,则PA⊥CD,由题意可知AD⊥CD,且PA∩AD=A,由线面垂直的判定定理可得CD⊥平面PAD.(Ⅱ)以点A为坐标原点,平面ABCD内与AD垂直的直线为x轴,AD,AP方向为y轴,z轴建立如图所示的空间直角坐标系,易知:,由可得点F的坐标为,由可得,设平面AEF的法向量为:,则,据此可得平面AEF的一个法向量为:,很明显平面AEP的一个法向量为,,二面角F-AE-P的平面角为锐角,故二面角F-AE-P的余弦值为.(Ⅲ)易知,由可得,则,注意到平面AEF的一个法向量为:,其且点A在平面AEF内,故直线AG在平面AEF内.20、(1)时,时,;(2);【解析】
(1)当时,求出,再利用错位相减法,求出的前项和;(2)求出的表达式,对,的大小进行分类讨论,从而求出数列的极限.【详解】(1)当时,可得,当时,得到,所以,当时,所以,两边同乘得上式减去下式得,所以所以综上所述,时,;时,.(2)由(1)可知当时,则;当时,则若,若,所以综上所述.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.21、(1)证明见解析;(2)【解析】
(1)如图所示,为中点,连接,证明为平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土班组劳务分包合同范本2025年
- 2025年度涉密供应商保密协议标准范本
- 二零二五年度二手车维修保养服务合同规范
- 2025年电力工程工程量清单编制合同
- 2025版浮雕艺术品施工及运输合同
- 2025版企业办公楼用花木租赁与美化合同
- 二零二五年度股权多人转一人变更及综合保障服务协议
- 2025版新能源汽车采购合同汇编
- 2025版进口货物国际铁路运输合同模板
- 二零二五年度城市绿化养护合同模板
- 乡村法律明白人培训课件
- 借贷合同不服管辖权异议被驳回上诉状
- 口腔咨询培训课件
- ROHS-2.0培训教材资料
- 佳能mg2580使用演示操作方法h
- DB4409T38-2023奇楠沉香栽培技术规程
- 湖南省长沙市周南教育集团2024届中考化学模拟试题含解析
- 常州关于成立光电测量仪器公司可行性研究报告
- 出境水果果园注册记录考核记录表格
- 新工程勘察设计收费标准(2002年修订本)
- DB61T1730-2023公路路面煤矸石基层施工技术规范
评论
0/150
提交评论