2023年广东省广州市越秀区执信中学高一数学第二学期期末考试试题含解析_第1页
2023年广东省广州市越秀区执信中学高一数学第二学期期末考试试题含解析_第2页
2023年广东省广州市越秀区执信中学高一数学第二学期期末考试试题含解析_第3页
2023年广东省广州市越秀区执信中学高一数学第二学期期末考试试题含解析_第4页
2023年广东省广州市越秀区执信中学高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与圆相切,则()A. B. C. D.2.已知分别为的三边长,且,则=()A. B. C. D.33.若向量,,则在方向上的投影为()A.-2 B.2 C. D.4.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.5.已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为()A. B. C. D.6.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”7.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.8.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()A. B.C. D.9.已知为递增等比数列,则()A. B.5 C.6 D.10.如果全集,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)12.展开式中,各项系数之和为,则展开式中的常数项为__________.13.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.14.已知,,若,则____15.对于下列数排成的数阵:它的第10行所有数的和为________16.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图(年份代码1-7分别对应年份)(1)建立关于的回归方程(系数精确到0.001);(2)预测2020年我国生活垃圾无害化处理量.附注:参考数据:,,回归方程中斜率和截距的最小二乘估计公式分别为:,.18.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.19.已知函数。(1)若,求不等式的解集;(2)若,且,求的最小值。20.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式21.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.2、B【解析】

由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.3、A【解析】向量,,所以,||=5,所以在方向上的投影为=-2故选A4、C【解析】

先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.5、D【解析】

作出图形,可知,由四边形的最小面积是,可知此时取最小值,由勾股定理可知的最小值为,即圆心到直线的距离为,结合点到直线的距离公式可求出的值.【详解】如下图所示,由切线长定理可得,又,,且,,所以,四边形的面积为面积的两倍,圆的标准方程为,圆心为,半径为,四边形的最小面积是,所以,面积的最小值为,又,,由勾股定理,当直线与直线垂直时,取最小值,即,整理得,,解得.故选:D.【点睛】本题考查由四边形面积的最值求参数的值,涉及直线与圆的位置关系的应用,解题的关键就是确定动点的位置,考查分析问题和解决问题的能力,属于中等题.6、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.7、C【解析】

求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【详解】,当斜率不存在时满足题意,即【点睛】本题主要考查斜率公式的应用,属于基础题.8、B【解析】

先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。故选B.【点睛】本题考查直线的性质与方程,属于基础题.9、D【解析】

设数列的公比为,根据等比数列的性质,得,又由,求得,进而可求解的值,得到答案.【详解】根据题意,等比数列中,设其公比为,因为,则有,又由,且,解得,所以,所以,故选D.【点睛】本题主要考查了等比数列的通项公式和等比数列的性质的应用,其中解答中熟练应用等比数列的性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.12、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.13、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.14、【解析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.15、【解析】

由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.16、【解析】

如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)亿吨【解析】

(1)由题意计算平均数与回归系数,写出回归方程,即可求得答案;(2)计算2020年对应的值以及的值,即可求得答案.【详解】(1)由折线图可得:关于的回归方程:.(2)年对应的值为当时,预测年我国生活垃圾无害化处理量为亿吨.【点睛】本题主要考查了求数据的回归直线方程和根据回归直线方程进行预测,解题关键是掌握回归直线的求法,考查了分析能力和计算能力,属于基础题.18、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式19、(1)答案不唯一,具体见解析(2)【解析】

(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为。【点睛】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.20、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】

(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.21、(1);(2)证明见解析.【解析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论