2023届上海市普陀区市级名校高一数学第二学期期末联考试题含解析_第1页
2023届上海市普陀区市级名校高一数学第二学期期末联考试题含解析_第2页
2023届上海市普陀区市级名校高一数学第二学期期末联考试题含解析_第3页
2023届上海市普陀区市级名校高一数学第二学期期末联考试题含解析_第4页
2023届上海市普陀区市级名校高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上不恒为的函数,且对任意,有成立,,令,则有()A.为等差数列 B.为等比数列C.为等差数列 D.为等比数列2.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定3.某市家庭煤气的使用量和煤气费(元)满足关系,已知某家庭今年前三个月的煤气费如下表:月份用气量煤气费一月份元二月份元三月份元若四月份该家庭使用了的煤气,则其煤气费为()元A. B. C. D.4.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.95.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.6.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形7.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)8.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水9.已知非零实数a,b满足,则下列不等关系一定成立的是()A. B. C. D.10.终边在轴上的角的集合()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.12.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.13.设为等差数列,若,则_____.14.方程的解集是__________.15.已知,,若,则____16.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.18.已知函数,,值域为,求常数、的值;19.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.20.有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100元.设该款手机每部使用年共需维修费用元,总费用元.(总费用购买费用网络费和电话费维修费用)(1)求函数、的表达式:(2)这款手机每部使用多少年时,它的年平均费用最少?21.已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,得到得到,.,说明为等差数列,故C正确,根据选项,排除A,D.∵.显然既不是等差也不是等比数列.故选C.2、A【解析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.3、C【解析】由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5.故选:C.点睛:这是函数的实际应用题型,根据题目中的条件和已知点得到分段函数的未知量的值,首先得到函数表达式,再根据题意让求自变量为20时的函数值,求出即可。实际应用题型,一般是先根据题意构建模型,列出表达式,根据条件求解问题即可。4、D【解析】

试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项5、C【解析】

将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、A【解析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【详解】,,,选A.【点睛】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.7、D【解析】

直接利用向量的坐标运算法则化简求解即可.【详解】解:向量a=(3,2),b则向量2b-故选D.【点睛】本题考查向量的坐标运算,考查计算能力.8、C【解析】

预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【点睛】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解析】

根据不等式的基本性质,一一进行判断即可得出正确结果.【详解】A.,取,显然不成立,所以该选项错误;B.,取,显然不成立,所以该选项错误;C.,取,显然不成立,所以该选项错误;D.,由已知且,所以,即.所以该选项正确.故选:.【点睛】本题考查不等式的基本性质,属于容易题.10、D【解析】

根据轴线角的定义即可求解.【详解】A项,是终边在轴正半轴的角的集合;B项,是终边在轴的角的集合;C项,是终边在轴正半轴的角的集合;D项,是终边在轴的角的集合;综上,D正确.故选:D【点睛】本题主要考查了轴线角的判断,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】

由题意可得,只需计算所有可能取值的个数即可.【详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【点睛】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.12、【解析】

由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【点睛】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.13、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。14、【解析】

令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.15、【解析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.16、【解析】

将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.【详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共个,因此,所求的事件的概率为,故答案为.【点睛】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。18、,;或,;【解析】

先利用辅助角公式化简,再根据,值域为求解即可.【详解】.又则,当时,,此时当时,,此时故,;或,;【点睛】本题主要考查了三角函数的辅助角公式以及三角函数值域的问题,需要根据自变量的范围求出值域,同时注意正弦函数部分的系数正负,属于中等题型.19、(Ⅰ)(Ⅱ)【解析】

(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古典概型公式得到事件发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为,.构成事件的区域为,,.根据几何概型公式得到结果.【详解】解:设事件为“方程有实数根”.当时,方程有实数根的充要条件为.(Ⅰ)基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(Ⅱ)实验的全部结果所构成的区域为.构成事件的区域为,所求的概率为【点睛】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.20、(1),;(2)这款手机使用年时它的年平均费用最少【解析】

(1)第年的维修费用为,根据等差数列求和公式可求得;将加上购买费用和年的网络费和电话费总额即可得到;(2)平均费用,利用基本不等式可求得最小值,根据取等条件可求得的取值.【详解】(1)则(2)设每部手机使用年的平均费用为则当,即时,这款手机使用年时它的年平均费用最少【点睛】本题考查构造合适的函数模型解决实际问题,涉及到函数最值的求解问题;解决本题中最值问题的关键是能够得到符合基本不等式的形式,利用基本不等式求得和的最小值.21、(1).(2);(3)【解析】

(1)利用等比数列通项公式以及求和公式化简,得到,由,,分别是一个等差数列的第1项,第2项,第5项,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论