版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”.下列说法正确的是()A.“连续整边三角形”只能是锐角三角形B.“连续整边三角形”不可能是钝角三角形C.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个D.若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个2.若不等式的解集为,则()A. B.C. D.3.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.124.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.5.设函数是上的偶函数,且在上单调递减.若,,,则,,的大小关系为()A. B. C. D.6.函数f(x)=log3(2﹣x)的定义域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]7.设变量,满足约束条件则目标函数的最小值为()A.4 B.-5 C.-6 D.-88.“”是“函数的图像关于直线对称”的()条件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要9.若点(m,n)在反比例函数y=的图象上,其中m<0,则m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣210.使函数是偶函数,且在上是减函数的的一个值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则_____.12.已知等比数列的前项和为,,则的值是__________.13.已知向量,向量,若与垂直,则__________.14.已知,,则______.15.设函数的最小值为,则的取值范围是___________.16.已知数列中,且当时,则数列的前项和=__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.18.已知.(1)求函数的最小正周期及值域;(2)求方程的解.19.设,,.(1)若,求实数的值;(2)若,求实数的值.20.记为等差数列的前项和,已知,.(Ⅰ)求的通项公式;(Ⅱ)求,并求的最小值.21.在中,成等差数列,分别为的对边,并且,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
举例三边长分别是的三角形是钝角三角形,否定A,B,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.【详解】三边长分别是的三角形,最大角为,则,是钝角,三角形是钝角三角形,A,B都错,如图中,,,是的平分线,则,∴,,∴,,又由是的平分线,得,∴,解得,∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.故选D.【点睛】本题考查余弦定理,考查命题的真假判断,数学上要说明一个命题是假命题,只要举一个反例即可,而要说明它是真命题,则要进行证明.2、D【解析】
根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【点睛】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.3、A【解析】
可先由弧长计算出半径,再计算面积.【详解】设扇形半径为,则,,.故选:A.【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.4、C【解析】
将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【详解】解:,,由正弦定理得:故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.5、B【解析】
根据偶函数的定义可变形,再直接比较的大小关系,即可利用函数的单调性得出,,的大小关系.【详解】因为函数是上的偶函数,所以,而,函数在上单调递减,所以.故选:B.【点睛】本题主要考查函数的性质的应用,涉及奇偶性,指数函数,对数函数的单调性,以及对数的运算性质的应用,属于基础题.6、C【解析】试题分析:利用对数函数的性质求解.解:函数f(x)=log3(1﹣x)的定义域满足:1﹣x>0,解得x<1.∴函数f(x)=log3(1﹣x)的定义域是(﹣∞,1).故选C.考点:对数函数的定义域.7、D【解析】绘制不等式组所表示的平面区域,结合目标函数的几何意义可知,目标函数在点处取得最小值.本题选择D选项.8、A【解析】
根据充分必要条件的判定,即可得出结果.【详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【点睛】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.9、C【解析】
根据题意可得出,再根据可得,将添上两个负号运用基本不等式,即可求解.【详解】由题意,可得,因为,所以,所以,当且仅当,即时,等号成立,故选:C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】
先根据辅助角公式化简,再根据奇偶性及在在上是减函数为减函数即可算出的范围。【详解】由题意得:因为是偶函数,所以,又因为在的减区间为,,在上是减函数,所以当时满足,选B.【点睛】本题主要考查了三角函数的性质:奇偶性质、单调性以及辅助角公式。型为奇函数,为偶函数。其中辅助角公式为。属于中等题。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.12、1【解析】
根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.13、;【解析】
由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.14、【解析】
由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.15、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)根据等差数列的通项公式求出首项,公差和等比数列的通项公式求出首项,公比即可.
(2)由用错位相减法求和.【详解】(1)在等差数列中,设首项为,公差为.由,有,解得:所以又设的公比为,由,,得所以.(2)…………………①……………②由①-②得所以【点睛】本题考查求等差、等比数列的通项公式和用错位相减法求和,属于中档题.18、(1)最小正周期为,值域为;(2),或,【解析】
先用降幂公式,再用辅助角公式将化简成的形式,再求最小正周期,值域与的解.【详解】(1)故最小正周期为,又,故,所以值域为.故最小正周期为,值域为.(2)由(1),故得化简得,所以或,.即,或,.故方程的解为:,或,【点睛】本题主要考查三角函数公式,一般方法是先将三角函数化简为的形式,再根据题意求解相关内容.19、(1);(2)【解析】
(1)由向量加法的坐标运算可得:,再由向量平行的坐标运算即可得解.(2)由向量垂直的坐标运算即可得解.【详解】解:(1),,,,,故,所以.(2),,,所以.【点睛】本题考查了向量加法的坐标运算、向量平行和垂直的坐标运算,属基础题.20、(1),(2),最小值为−1.【解析】
(Ⅰ)根据等差数列的求和公式,求得公差d,即可表示出的通项公式;(Ⅱ)根据等差数列的求和公式得Sn=n2-8n,根据二次函数的性质,可得Sn的最小值.【详解】(I)设的公差为d,由题意得.由得d=2.所以的通项公式为.(II)由(I)得.所以当n=4时,取得最小值,最小值为−1.【点睛】本题考查了等差数列的通项公式,考查了等差数列的前n项的和公式,考查了等差数列前n项和的最值问题;求等差数列前n项和的最值有两种方法:①函数法,②邻项变号法.21、或.【解析】
先算出,从而得到,也就是,结合面积得到,再根据余弦定理可得,故可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《苦练》听评课记录
- 小学语文基础知识大全
- 110kv电网课程设计
- 2022-2023学年广东省深圳市罗湖区九年级上学期期中物理试卷及答案
- 青海省海西蒙古族藏族自治州德令哈市2024年一级造价工程师《土建计量》考前冲刺试题含解析
- 《光电式光栅改》课件
- 学雷锋纪念日模板课件97
- 《不锈钢水槽最终》课件
- 《IPQC稽核技巧》课件
- 《数据库培训》课件
- 【期末试题】河西区2018-2019学年度第一学期六年级英语期末试题
- 迷你仓租赁合同范本
- DB33-T1174-2019《风景名胜区环境卫生作业管理标准》
- 五年级数学上册试题 -《统计表和条形统计图》习题2-苏教版(含答案)
- 粤教粤科版小学科学四年级上册课时同步练习试题及答案(全册)
- 华为物联网业务布局研究报告
- 医院建筑使用过程中的装饰装修改造设计分析
- 餐饮仓库管理的规章制度(优秀五篇)
- (完整word版)石材铝板幕墙设计说明
- 食品安全法培训课件
- 钳夹实验汇总
评论
0/150
提交评论