




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则下列等式一定成立的是()A. B. C. D.2.如图,在平面直角坐标系xOy中,角α0≤α≤π的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转π2至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数A. B.C. D.3.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形4.等差数列{an}的前n项之和为Sn,若A.45 B.54C.63 D.275.以点和为直径两端点的圆的方程是()A. B.C. D.6.在,内角所对的边分别为,且,则()A. B. C. D.17.已知二次函数,当时,其抛物线在轴上截得线段长依次为,则的值是A.1 B.2 C.3 D.48.已知向量,则与的夹角为()A. B. C. D.9.设双曲线的左右焦点分别是,过的直线交双曲线的左支于两点,若,且,则双曲线的离心率是()A. B. C. D.10.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为________.12.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.13.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.14.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.15.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是______.16.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.18.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.21.某厂每年生产某种产品万件,其成本包含固定成本和浮动成本两部分.已知每年固定成本为20万元,浮动成本,.若每万件该产品销售价格为40万元,且每年该产品产销平衡.(1)设年利润为(万元),试求与的关系式;(2)年产量为多少万件时,该厂所获利润最大?并求出最大利润.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.2、B【解析】BQ=|y点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.3、C【解析】
由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【详解】因为,,所以,,即,.故选:C.【点睛】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.4、B【解析】
由等差数列的性质,可知a1【详解】由等差数列的性质,可知a1又由等差数列的前n项和公式,可得S9【点睛】本题主要考查了等差数列的性质,以及前n项和公式的应用,其中解答中熟记等差数列的性质,以及利用等差数列的求和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.5、A【解析】
可根据已知点直接求圆心和半径.【详解】点和的中点是圆心,圆心坐标是,点和间的距离是直径,,即,圆的方程是.故选A.【点睛】本题考查了圆的标准方程的求法,属于基础题型.6、C【解析】
直接利用余弦定理求解.【详解】由余弦定理得.故选C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.7、A【解析】
当时,,运用韦达定理得,运用裂项相消求和可得由此能求出【详解】当时,,由,可得,,由,.故选:A.【点睛】本题主要考查了函数的极限的运算,裂项相消求和,根与系数的关系,属于中档题.8、D【解析】
先求出的模长,然后由可求出答案.【详解】由题意,,,所以与的夹角为.故选D.【点睛】本题考查了两个向量的夹角的求法,考查了向量的模长的计算,属于基础题.9、C【解析】,则,所以,,则,所以,故选C。点睛:离心率问题关键是利用圆锥曲线的几何性质,以及三角形的几何关系来解决,本题中,由双曲线的几何性质,可以将图中的各边长都表示出来,再利用同一个角在两个三角形中的余弦定理,就可以得到的等量关系,求出离心率。10、C【解析】
根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用反三角函数的单调性即可求解.【详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【点睛】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.12、【解析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.13、【解析】
由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【点睛】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.14、.【解析】
先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.15、【解析】
将所求两条异面直线平移到一起,解三角形求得异面直线所成的角.【详解】连接,根据三角形中位线得到,所以是异面直线与所成角.在三角形中,,所以三角形是等边三角形,故.故填:.【点睛】本小题主要考查异面直线所成的角的求法,考查空间想象能力,属于基础题.16、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理,两角和的正弦函数公式化简已知等式可得,由,可求,结合范围,可求.(2)利用三角形的面积公式可求,进而根据余弦定理可得,即可计算得解的周长的值.【详解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面积为,,∴,∴由余弦定理可得:,∴解得:,∴的周长.【点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18、(1)见解析.(2)见解析.【解析】
(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1),,(2)猜想:,证明见解析【解析】
(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(I);(II)【解析】
(I)由正弦定理得,展开结合两角和的正弦整理求解;(Ⅱ)由面积得,利用平方求解即可【详解】(I),由正弦定理得整理得,则,,.(II),,两边平方得【点睛】本题考查正弦定理及两角和的正弦,三角形内角和定理,考查向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全职合同标准文本
- 供蔬菜合同样本
- 亚克力月结合同样本
- 供货矿石合同标准文本
- 仓库农庄出租合同样本
- 借用产品合同样本
- 乡村振兴改造合同样本
- 井下劳动合同标准文本
- 做电子合同标准文本
- 借款合同样本11篇
- 《人工智能技术基础》课件-第六章 知识图谱
- 2025年山东省济南市市中区中考物理一模试卷(无答案)
- 商业秘密保护:内外勾结型侵犯行为的司法认定分析
- 2025年全国中小学生安全教育日专题
- 2025年电子设备装接工岗位职业技能资格证考试题(附答案)
- 2025年河南航空港发展投资集团有限公司社会招聘45人笔试参考题库附带答案详解
- 2025太阳能光热发电站熔融盐储热系统技术
- 2025年安阳职业技术学院单招职业技能测试题库及答案一套
- 2024年全国高考新课标Ⅱ卷数学试题含答案解析
- 2025延长石油(集团)限责任公司社会招聘高频重点提升(共500题)附带答案详解
- 2025年山东国际信托股份限公司社会招聘高频重点提升(共500题)附带答案详解
评论
0/150
提交评论