2023届北京师大第二附中数学高一第二学期期末达标测试试题含解析_第1页
2023届北京师大第二附中数学高一第二学期期末达标测试试题含解析_第2页
2023届北京师大第二附中数学高一第二学期期末达标测试试题含解析_第3页
2023届北京师大第二附中数学高一第二学期期末达标测试试题含解析_第4页
2023届北京师大第二附中数学高一第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在复平面内,复数满足,则的共轭复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.3.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.74.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形5.如图,在直三棱柱中,,,,则异面直线与所成角的余弦值是()A. B. C. D.6.设等比数列满足,,则()A.8 B.16 C.24 D.487.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,8.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.99.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.18210.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.(结果用反三角函数表示)12.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.13.设是数列的前项和,且,,则__________.14.若,则实数的值为_______.15.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.16.在中,内角的对边分别为,若的周长为,面积为,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.18.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.19.在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=(a2+c2﹣b2).(1)求角B的大小;(2)若边b=,求a+c的取值范围.20.如图,在平面直角坐标系中,锐角、的终边分别与单位圆交于、两点.(1)如果,点的横坐标为,求的值;(2)已知点,函数,若,求.21.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z(1﹣i)=2,得z=,∴.则z的共轭复数对应的点的坐标为(1,﹣1),位于第四象限.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2、B【解析】

根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.3、B【解析】

分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.4、D【解析】

用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.5、D【解析】连结,∵,

∴是异面直线与所成角(或所成角的补角),

∵在直三棱柱中,,,,

∴,,,,

∴,

∴异面直线与所成角的余弦值为,故选D.6、A【解析】

利用等比数列的通项公式即可求解.【详解】设等比数列的公比为,则,解得所以.故选:A【点睛】本题考查了等比数列的通项公式,需熟记公式,属于基础题.7、A【解析】

根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。8、C【解析】

由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.9、B【解析】

由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.10、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.12、4【解析】

由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题13、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、【解析】

由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.15、【解析】

分别求出{}、{}的通项公式,再统一形式即可得解。【详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【点睛】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。16、3【解析】

分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)三段人数分别为3,2,1(3)【解析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人数为n,由,可得n=1000,从而体重超过65kg的总人数300,由此能求出各组应分别抽取的人数;(3)利用频率分布直方图能估计高二男生的体重的中位数与平均数试题解析:(1)体重在内的频率补全的频率分布直方图如图所示.(2)设男生总人数为,由,可得体重超过的总人数为在的人数为,应抽取的人数为,在的人数为,应抽取的人数为,在的人数为,应抽取的人数为.所以在,,三段人数分别为3,2,1.(3)中位数为60kg,平均数为(kg)考点:1.众数、中位数、平均数;2.分层抽样方法;3.频率分布直方图18、(1);(2)【解析】

(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.19、(1)B=60°(2)【解析】

(1)由三角形的面积公式,余弦定理化简已知等式可求tanB的值,结合B的范围可求B的值.(2)由正弦定理,三角函数恒等变换的应用可求a+csin(A),由题意可求范围A∈(,),根据正弦函数的图象和性质即可求解.【详解】(1)在△ABC中,∵S(a2+c2﹣b2)acsinB,cosB.∴tanB,∵B∈(0,π),∴B.(2)∵B,b,∴由正弦定理可得1,可得:a=sinA,c=sinC,∴a+c=sinA+sinC=sinA+sin(A)=sinAcosAsinAsin(A),∵A∈(0,),A∈(,),∴sin(A)∈(,1],∴a+csin(A)∈(,].【点睛】本题考查了正弦定理、余弦定理、三角形面积计算公式及三角函数恒等变换的应用,考查了推理能力与计算能力,属于中档题.20、(1);(2)【解析】

(1)根据条件求出的正余弦值,利用两角和的余弦公式计算即可(2)利用向量的数量积坐标公式运算可得,由求出即可求解.【详解】(1),为锐角,则,点的横坐标为,即有,,则;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论