2022-2023学年四川省成都市龙泉驿区第一中学校高一数学第二学期期末学业水平测试模拟试题含解析_第1页
2022-2023学年四川省成都市龙泉驿区第一中学校高一数学第二学期期末学业水平测试模拟试题含解析_第2页
2022-2023学年四川省成都市龙泉驿区第一中学校高一数学第二学期期末学业水平测试模拟试题含解析_第3页
2022-2023学年四川省成都市龙泉驿区第一中学校高一数学第二学期期末学业水平测试模拟试题含解析_第4页
2022-2023学年四川省成都市龙泉驿区第一中学校高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线l1:ax+2y+8=0与l2:x+(a-1)y+a2-1=0平行,则实数a的取值是()A.-1或2 B.-1 C.0或1 D.22.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.33.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.4.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.5.函数的部分图像如图所示,则当时,的值域是()A. B.C. D.6.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.7.设的内角,,所对的边分别为,,,且,,面积的最大值为()A.6 B.8 C.7 D.98.若关于x,y的方程组无解,则()A. B. C.2 D.9.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等10.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.12.函数的定义域是________13.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).14.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.15.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)16.已知,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.18.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.已知(1)求函数的单调递减区间:(2)已知,求的值域20.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.21.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.(1)求茎叶图中数据的平均数和的值;(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

【详解】,选A.【点睛】本题考查由两直线平行求参数.2、D【解析】

由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!3、D【解析】

画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.4、A【解析】

根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.5、D【解析】如图,,得,则,又当时,,得,又,得,所以,当时,,所以值域为,故选D.点睛:本题考查由三角函数的图象求解析式.本题中,先利用周期求的值,然后利用特殊点(一般从五点内取)求的值,最后根据题中的特殊点求的值.值域的求解利用整体思想.6、B【解析】

设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【点睛】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.7、D【解析】

由已知利用基本不等式求得的最大值,根据三角形的面积公式,即可求解,得到答案.【详解】由题意,利用基本不等式可得,即,解得,当且仅当时等号成立,又因为,所以,当且仅当时等号成立,故三角形的面积的最大值为,故选D.【点睛】本题主要考查了基本不等式的应用,以及三角形的面积公式的应用,着重考查了转化思想,以及推理与运算能力,属于基础题.8、A【解析】

由题可知直线与平行,再根据平行公式求解即可.【详解】由题,直线与平行,故.故选:A【点睛】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.9、C【解析】

由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【点睛】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.10、C【解析】

求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】

奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.12、【解析】

根据的值域为求解即可.【详解】由题.故定义域为.故答案为:【点睛】本题主要考查了反三角函数的定义域,属于基础题型.13、①②④【解析】

根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.14、【解析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.15、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.16、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.18、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】

(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.19、(1)();(2)【解析】

(1)将三角函数化简为,再求函数的单调减区间.(2)根据得到,得到最后得到答案.【详解】(1),令解得:可得函数的单调递减区间为:();(2)的值域为【点睛】本题考查了三角函数的单调区间和值域,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.20、(1);(2)或.【解析】

(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.21、(1)平均数为;(2)【解析】

(1)由题意,根据图中个数据的中位数为,由平均数与中位数相同,得平均数为,所以,解得;(2)依题意,人中,“基本满意”有人,“满意”有人,“很满意”有人.“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论