2022-2023学年江苏省常州市达标名校数学高一下期末复习检测试题含解析_第1页
2022-2023学年江苏省常州市达标名校数学高一下期末复习检测试题含解析_第2页
2022-2023学年江苏省常州市达标名校数学高一下期末复习检测试题含解析_第3页
2022-2023学年江苏省常州市达标名校数学高一下期末复习检测试题含解析_第4页
2022-2023学年江苏省常州市达标名校数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有()A. B. C. D.2.在中,为的三等分点,则()A. B. C. D.3.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或94.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形5.函数的最小正周期是()A. B. C. D.6.已知,且,,则()A. B. C. D.7.同时抛掷两个骰子,则向上的点数之和是的概率是()A. B. C. D.8.已知是非零向量,若,且,则与的夹角为()A. B. C. D.9.为了得到函数的图像,可以将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位10.若实数,满足约束条件则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.12.已知数列满足:,,则使成立的的最大值为_______13.已知向量,则________14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.15.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.16.在中,三个角所对的边分别为.若角成等差数列,且边成等比数列,则的形状为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(Ⅰ)求的值;(Ⅱ)若,求的值.18.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.19.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.20.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.21.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先根据等比数列的求和公式求出首项,再根据通项公式求解.【详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【点睛】本题考查等比数列的应用,关键在于理解题意.2、B【解析】试题分析:因为,所以,以点为坐标原点,分别为轴建立直角坐标系,设,又为的三等分点所以,,所以,故选B.考点:平面向量的数量积.【一题多解】若,则,即有,为边的三等分点,则,故选B.3、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。4、C【解析】

由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.5、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.6、C【解析】

根据同角公式求出,后,根据两角和的正弦公式可得.【详解】因为,所以,因为,所以.因为,所以,因为,所以.所以.故选:C【点睛】本题考查了同角公式,考查了两角和的正弦公式,拆解是解题关键,属于中档题.7、C【解析】

由题意可知,基本事件总数为,然后列举出事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】同时抛掷两个骰子,共有个基本事件,事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件有:、、、、,共个基本事件.因此,所求事件的概率为.故选:C.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.8、D【解析】

由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.9、D【解析】

根据三角函数的图象平移的原则,即左加右减,即可得答案.【详解】由,可以将函数图象向左平移个长度单位即可,故选:D.【点睛】本题考查三角函数的平移变换,求解时注意平移变换是针对自变量而言的,同时要注意是由谁变换到谁.10、A【解析】

的几何意义为点与点所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【详解】的几何意义为点与点所在直线的斜率.画出如图的可行域,当直线经过点时,;当直线经过点时,.的取值范围为,故选A.【点睛】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.12、4【解析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.13、2【解析】

由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.14、3【解析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.15、【解析】

点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【点睛】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.16、等边三角形【解析】

分析:角成等差数列解得,边成等比数列,则,再根据余弦定理得出的关系式.详解:角成等差数列,则解得,边成等比数列,则,余弦定理可知故为等边三角形.点睛:判断三角形形状,是根据题意推导边角关系的恒等式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知求得,再由,利用两角差的余弦公式展开求解,即可求出结果.【详解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【点睛】本题主要考查了两角和差的正余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.18、(1)(2)3;(3)【解析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.19、(I);(II)见解析;(III)的最大值为1【解析】

(I)直接令中的n=1即得的值;(II)由题得时,,化简即得证;(III)用累加法可得:,再利用项和公式求得,再求的范围得解.【详解】(I)(II)因为,所以时,,化简得:;(III)因为,用累加法可得:,由,得,当时,上式也成立,因为,则,所以是单调递减数列,所以,又因为,所以,即,的最大值为1.【点睛】本题主要考查项和公式求数列的通项,考查数列的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)4;(2)【解析】

(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【点睛】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论