版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的前项和为,若,则()A. B. C.5 D.62.若直线与直线平行,则A. B. C. D.3.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣44.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.5.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)6.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.7.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则8.已知向量,,,且,则()A. B. C. D.9.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.10.设等差数列的前项和为,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则____.12.已知点和在直线的两侧,则a的取值范围是__________.13.已知,向量的夹角为,则的最大值为_____.14.在平行四边形中,为与的交点,,若,则__________.15.设向量,且,则__________.16.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.18.已知等差数列满足,.(1)求的通项公式;(2)设等比数列满足.若,求的值.19.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)220.如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.21.已知为数列的前n项和,且.(1)求数列的通项公式;(2)若,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先通分,再利用等比数列的性质求和即可。【详解】.故选A.【点睛】本题考查等比数列的性质,属于基础题。2、A【解析】由题意,直线,则,解得,故选A.3、A【解析】
由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
取中点,中点,连接,先证明为所求角,再计算其大小.【详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【点睛】本题考查了线面夹角,先找出线面夹角是解题的关键.5、B【解析】
先分别求出集合A和B,由此能求出A∪B.【详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.6、D【解析】
根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.7、B【解析】
根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.8、C【解析】
由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值9、A【解析】,,,故选A.10、A【解析】
利用等差数列的基本量解决问题.【详解】解:设等差数列的公差为,首项为,因为,,故有,解得,,故选A.【点睛】本题考查了等差数列的通项公式与前项和公式,解决问题的关键是熟练运用基本量法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.12、【解析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.13、【解析】
将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.14、【解析】
根据向量加法的三角形法则逐步将待求的向量表示为已知向量.【详解】由向量的加法法则得:所以,所以故填:【点睛】本题考查向量的线性运算,属于基础题.15、【解析】因为,所以,故答案为.16、【解析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)求得,在中运用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面积公式,可得所求值.【详解】(1)由题意可得,在中,由余弦定理可得,则;(2)在中,,,,的面积为.【点睛】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.18、(1);(2)63【解析】
(1)求出公差和首项,可得通项公式;(2)由得公比,再得,结合通项公式求得.【详解】(1)由题意等差数列的公差,,,∴;(2)由(1),∴,,∴,.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.19、(1)g(x)=0,-x2【解析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+(b+3)【点睛】本题考查了函数与方程,涉及了分段函数、零点、韦达定理等内容,综合性较强,属于难题.20、(1)证明见解析;(2).【解析】试题分析:(1)通过面面平行证明线面平行,所以取的中点,的中点,连接.只需通过证明HG//BC,HF//AB来证明面GHF//面ABC,从而证明底面.(2)原图形可以看作是以点C为顶点,ABDE为底的四棱锥,所四棱锥的体积公式可求得体积.试题解析:(1)取的中点,的中点,连接.(如图)∵分别是和的中点,∴,且,,且.又∵为正方形,∴,.∴且.∴为平行四边形.∴,又平面,∴平面.(2)因为,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱锥,∴.【点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都锦城学院《大数据技术基础》2022-2023学年期末试卷
- 网站服务条款页面建设合同
- 运营管理简单合同书范本
- 保险担保协议
- 车辆事故赔偿协议书书
- 浙教版2021-2022学年度七年级数学上册模拟测试卷 (473)【含简略答案】
- 智能家居代加工合同
- 渤海大学《大数据分析与实践》2022-2023学年期末试卷
- 北京邮电大学《智能机器通信与网络》2021-2022学年期末试卷
- 权利股票配资协议
- 酒水知识培训课件
- 产业技术创新联合体协议书
- 2024年中考语文考前抓大分技法之小说阅读专题05小说句子作用(原卷版+解析)
- 人像摄影教程ppt
- 生活中的物理-完整版课件
- 道路护栏采购项目供货、运输方案
- 高中物理 人教版 必修三《电磁感应与电磁波初步》单元教学设计
- 2024年银行从业考试银行业法律法规及综合能力重点整理
- 朱智贤的心理发展观课件
- 项目对比方案模板
- 颅内动脉瘤围手术期的护理
评论
0/150
提交评论