版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年七下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,面积为64的正方形ABCD被分成4个相同的长方形和1个面积为4的小正方形,则a,b的值分别是()A.3,5 B.5,3 C.6.5,1.5 D.1.5,6.52.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°3.计算3a•(2b)的结果是()A.3abB.6aC.6abD.5ab4.若,,则的值为A.3 B.21 C.23 D.255.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为()A.60° B.75° C.85° D.95°6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.57.如图,下列判断中正确的是()A.如果∠3+∠2=180°,那么AB∥CD B.如果∠1+∠3=180°,那么AB∥CDC.如果∠2=∠4,那么AB∥CD D.如果∠1=∠5,那么AB∥CD8.已知a,b.c均为实数,a<b,那么下列不等式一定成立的是()A. B.C. D.9.如果一个三角形的三边、、,满足,那么这个三角形一定是()A.等边三角形 B.等腰三角形 C.不等边三角形 D.直角三角形10.如果,且,则的值是()A.6 B. C.6或 D.无法确定二、填空题(本大题共有6小题,每小题3分,共18分)11.如果点在轴上,那么点在第______象限.12.为丰富学生的体育活动,某校计划使用资金2000元购买篮球和足球(两种球都买且钱全部花光).若每个篮球80元,每个足球50元,则该校的购买方案个数为_________.13.已知,,则______.14.已知且,为两个连续整数,则___________.15.一个含30°角和另一个含45°角的三角板按如图所示放置,直角顶点重合,且两条斜边,则__________°.16.若,,则_______.三、解下列各题(本大题共8小题,共72分)17.(8分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.18.(8分)(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.19.(8分)某动物园的门票价格如表:成人票价40元/人儿童票价20元/人今年六一儿童节期间,该动物园共售出840张票,得票款27200元,该动物园成人票和儿童票各售出多少张?20.(8分)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.21.(8分)(1)解不等式组,并将其解集在数轴上表示出来.(2)先因式分解,再计算求值:,其中,.22.(10分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.(定理证明)已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.(定理推论)如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.(初步运用)如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB=;(2)若∠A=80°,则∠DBC+∠ECB=.(拓展延伸)如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP=;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.23.(10分)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.24.(12分)为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
开方后求出大、小正方形的边长,观察图形,根据a、b之间的关系可得出关于a、b的二元一次方程组,解之即可得出结论.【详解】64=8,4=1.根据题意得:a+b=8b-a=2解得:a=3b=5故选:A.【点睛】本题考查了算术平方根的意义,二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2、A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.3、C【解析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:3a•(2b)=3·2a•b=6ab.故选C。4、B【解析】
将a+b=5两边平方,利用完全平方公式化简,将ab的值代入计算即可求出a2+b2的值.【详解】解:把两边平方得:,把代入得:,则,故选:.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5、D【解析】根据旋转的性质知,∠BAD=∠EAC=65°,∠C=∠E=60°,如图,设AD⊥BC于点F,则∠AFB=90°,∴在Rt△ABF中,∠B=90°−∠BAD=25°,∴在△ABC中,∠BAC=180°−∠B−∠C=180°−25°−60°=95°,即∠BAC的度数为95°,故选D.6、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.7、D【解析】分析:直接利用平行线的判定方法分别判断得出答案.详解:A、如果∠3+∠2=180°,无法得出AB∥CD,故此选项错误;B、如果∠1+∠3=180°,无法得出AB∥CD,故此选项错误;C、如果∠2=∠4,无法得出AB∥CD,故此选项错误;D、如果∠1=∠5,那么AB∥CD,正确.故选D.点睛:此题主要考查了平行线的判定,正确掌握相关判定方法是解题关键.8、D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A、∵a<b,∴a-b<0,故本选项错误;B、∵a<b,∴-3a>-3b,故本选项错误;C、当c=0时,a|c|=b|c|,故本选项错误;D、∵a<b,c2+1>0,∴a(c2+1)<b(c2+1),故本选项正确.故选D.点睛:本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.9、B【解析】
由已知推出=0即(a-b)(b-c)=0,即可判定三角形边的关系.【详解】解:=0(a-b)(b-c)=0即:a=b或b=c,则三角形一定为等腰三角形;故答案为B.【点睛】本题考查了三角形形状的判定,其关键在于对等式的变形,推导出a、b、c的关系.10、B【解析】=-a-(-b)=b-a=-6.故选B二、填空题(本大题共有6小题,每小题3分,共18分)11、二【解析】
由题意n=0,从而得到点B的坐标,从而根据负,正在第二象限.【详解】∵点A(2,n)在x轴上,∴n=0,∴B为(-2,1),∴点B在第二象限.故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、1【解析】
设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买资金是2000元,即可得出关于x、y的二元一次方程,解方程即可.【详解】设购买篮球x个,购买足球y个,由题意得:80x+50y=2000,解得:y=10x.因为,x、y都是正整数,所以,当x=5时,y=32;当x=10时,y=21;当x=15时,y=16;当x=20时,y=8;共有四个购买方案.故答案为:1.【点睛】本题考查了二元一次方程的应用,此题是一道紧密联系生活实际的题,二元一次方程整数解的应用.13、1【解析】分析:直接利用完全平方公式将原式变形进而计算得出答案.详解:∵a-b=5,ab=-4,∴(a-b)2=25,则a2-2ab+b2=25,故a2+b2=25+2ab=25-8=1.故答案为:1.点睛:此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b)2=a2±2ab+b2是解题关键.14、5【解析】
我们知道三次根式被开方数越大,根式的值就越大,题中告诉我们ab为整数且连续,则可以从被开方数23入手分析,小于23且三次开方能够开的尽的数是8,大于23且三次开方能够开的尽的数是27,从而得到a和b的值.【详解】小于23且三次开方能够开的尽的数是8,大于23且三次开方能够开的尽的数是27则,即所以,所以故答案为5.【点睛】本题含义为小于的最大的整数,大于的最小的整数,关键是找准被开方数23,在23的左右找到符合条件的能够开三次方开的尽的整数.所以务必清楚一些常见的能够开三次方开的尽的整数,如1,8,27,64等.15、15【解析】
根据求出∠BDF=60°,即可求出∠DCF=15°,根据∠DCF+∠DCE=∠ACE+∠DCE即可求出∠ACE=∠DCF=15°.【详解】∵,∴∠BDF=∠B=60°,∵∠BDF=∠F+∠DCF,∠F=45°,∴∠DCF=15°,∵∠DCF+∠DCE=∠ACE+∠DCE=90°,∴∠ACE=∠DCF=15°故答案为:15.【点睛】此题考查平行线的性质,三角形外角的性质,正确理解图形中各角度之间的关系是解题的关键.16、8【解析】
收购西安利用平方差公式,将展开,在代入计算即可.【详解】根据题意可得因此代入,,可得原式=8故答案为8.【点睛】本题主要考查平方差公式,是基本知识点,应当熟练掌握.三、解下列各题(本大题共8小题,共72分)17、(1)七(1)班有47人,七(2)班有51人;(2)如果两个班联合起来买票,不可以买单价为9元的票,省钱的方法,可以买101张票,多余的作废即可【解析】
(1)由两个班联合起来,作为一个团体购票,则需付1078元可知:可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x人,七(2)班有y人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。【详解】解:(1)∵两个班联合起来,作为一个团体购票,则需付1078元有∵可得票价不是9元,所以两个班的总人数没有超过100人,∴设七(1)班有x人,七(2)班有y人,依题意得:∴七(1)班有47人,七(2)班有51人(2)因为47+51=98<100∴如果两个班联合起来买票,不可以买单价为9元的票∴省钱的方法,可以买101张票,多余的作废即可。可省:【点睛】熟练掌握二元一次方程组的实际问题是解题的关键。18、(1)详见解析(2)∠BCF=∠B+∠F(3)∠1+∠3+∠5=∠2+∠4【解析】
(1)过点E作EF∥AB,得∠BEF=25°,得∠DEF=55°,从而可证AB∥CD;(2)作CD∥AB,根据平行线的传递性得CD∥EF,则根据平行线的性质得∠BCD=∠B,∠DCF=∠F,所以∠BCD+∠DCF=∠B+∠F,故可得结论;(3)方法同(2)【详解】(1)过点E作EF∥AB∵∠B=25°∴∠BEF=∠B=25°∵∠BED=80°∴∠DEF=∠BED-∠BEF=55°∵∠D=55°∴∠D=∠DEF∴EF∥CD∴AB∥CD(2)过点C作CD∥AB,则CD∥EF,∵AB∥CD,∴∠BCD=∠B,∵CD∥EF,∴∠DCF=∠F,∴∠BCD+∠DCF=∠B+∠F,即∠C=∠B+∠F.(3)∠1+∠3+∠5=∠2+∠4,如图,作MN∥AB,由(2)的结论得到∠2=∠1+∠6,∠4=∠5+∠7,∴∠2+∠4=∠1+∠6+∠5+∠7=∠1+∠3+∠5.【点睛】本题考查了平行线的判定与性质:同旁内角互补,两直线平行;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.作出相关辅助线是解此题的关键.19、成人票520张,儿童票320张【解析】
设售出成人票x张,儿童票y张,根据题目中的等量关系列出方程组求解即可.【详解】解:设售出成人票x张,儿童票y张,根据题意得:,解得:,答:售出成人票520张,儿童票320张.【点睛】本题考查了二元一次方程组的应用,解题的关键是熟练的掌握二元一次方程组的应用.20、(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)最省钱的租车方案是:4辆大车,2辆小车【解析】
(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.根据题意:“租用1辆大车2辆小车共需租车费1000元”;“租用2辆大车一辆小车共需租车费1100元”;列出方程组,求解即可;(2)根据汽车总数不能小于(取整为6)辆,即可求出共需租汽车的辆数;设租用大车m辆,则租车费用Q(单位:元)是m的函数,由题意得出400m+300(6-m)≤2300,得出取值范围,分析得出即可.【详解】解:(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.可得方程组,解得.答:大车每辆的租车费是400元、小车每辆的租车费是300元;(2)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;又要保证240名师生有车坐,汽车总数不能小于(取整为6)辆,综合起来可知汽车总数为6辆.设租用m辆大型车,则租车费用Q(单位:元)是m的函数,即Q=400m+300(6-m);化简为:Q=100m+1800,依题意有:100m+1800≤2300,∴m≤5,又要保证240名师生有车坐,45m+30(6-m)≥240,解得m≥4,所以有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.∵Q随m增加而增加,∴当m=4时,Q最少为2200元.故最省钱的租车方案是:4辆大车,2辆小车.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用和理解题意的能力,关键是根据题目所提供的等量关系和不等量关系,列出方程组和不等式求解.21、(1).在数轴上表示不等式组的解集见解析;(2)6.【解析】
(1)先将不等式组求解范围后在数轴上表示出来;
(2)将式子提取公因数后,再将x和m的值代入求解.【详解】(1),由①得:,由②得:,∴不等式组的解集是.在数轴上表示不等式组的解集是:(2)当,时原式【点睛】本题主要考查因式分解的知识点,掌握一元一次不等式组的求解是解答本题的关键.22、[定理证明]证明见解析;[定理推论]∠A+∠ABC;[初步运用](1)70°;(2)260°;[拓展延伸](1)230°;(2)(2)∠P=∠A+100°.(3)证明见解析.【解析】
[定理证明]过点A作直线MN∥BC,根据平行线的性质和平角的定义可得结论;[定理推论]根据三角形的内角和定理和平角的定义可得结论;[初步运用](1)根据三角形的外角等于与它不相邻的两个内角的和列式可得结论;(2)根据三角形的内角和得:∠ABC+∠ACB=100°,由两个平角的和可得结论;[拓展延伸](1)连接AP,根据三角形内角和定理的推论可得等式,将两个等式相加可得结论;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,综合可得结论;(3)如图⑥,作辅助线,构建三角形PQC,根据(1)的结论得:∠DBP+∠ECP=∠A+∠BPC,和角平分线的定义,证明∠MBP=∠PQC,可得结论.【详解】[定理证明]证明:过点A作直线MN∥BC,如图所示,∴∠MAB=∠B,∠NAC=∠C,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°;[定理推论]∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠ABC,故答案为:∠A+∠ABC;[初步运用](1)∵∠DBC=∠A+∠ACB,∴∠ACB=∠DBC-∠A=150°-80°=70°,故答案为:70°;(2)∵∠A=80°,∴∠ABC+∠ACB=100°,∴∠DBC+∠ECB=360°-100°=260°,故答案为:260°;[拓展延伸](1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=80°,∠P=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=80°+130°=230°,故答案为:230°;(2)∠P=∠A+100°.理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=50°,∴∠P=∠A+100°,故答案为:∠P=∠A+100°;(3)证明:延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠EC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 太空垃圾监测与防范-洞察分析
- 药物副作用机制研究-洞察分析
- 网络视觉文化的性别表达研究-洞察分析
- 土地利用分类技术-洞察分析
- 冬季防火精彩讲话稿(10篇)
- 太阳能技术工作总结
- 《会计基础讲解》课件
- 办公效率提升以设计思维解决实际问题
- 办公环境下的德育教育案例分享
- 《电信诈骗小知识》课件
- 2022年中学校园课外阅读调查报告
- 透析患者心理护理-课件
- 玻璃电熔炉设计
- 冷却塔使用说明书(荏原)
- 江苏省连云港市各县区乡镇行政村村庄村名居民村民委员会明细
- 引上管的设计及安装要求
- 一年级美术(上册)课件-《认识美术工具》教学课件
- GB∕T 32218-2015 真空技术 真空系统漏率测试方法
- 医院建筑设计重点、难点分析及应对措施
- 大坝枢纽工程截流施工方案
- 风冷螺杆热泵机组招标技术要求
评论
0/150
提交评论