版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间域图像增强演示文稿当前1页,总共95页。(优选)空间域图像增强当前2页,总共95页。主要内容3.1简介3.2基本灰度变换3.3直方图处理(难点)3.4算术/逻辑操作增强3.5平滑空间滤波器3.6锐化空间滤波器3.7在图像增强中使用直方图统计学(一个精妙的例子,自学)3.8混合空间滤波器:(又一个精妙的例子,自学)当前3页,总共95页。
3.1简介1图像增强的定义图像增强是一类基本的图像处理技术,其目的是对图像进行加工,以得到对视觉解释来说视觉效果“更好”、或对机器感知效果来说“更有用”的图像。(1)视觉效果更好的例子当前4页,总共95页。(2)机器感知效果更好的例子“特征脸”当前5页,总共95页。2图像增强的分类(1)空间域增强和频率域增强(2)空间域增强方法分类
g(x,y)=T(f(x,y))A、点操作
B、邻域操作
C、图像集操作当前6页,总共95页。
3.2基本灰度变换1图像反转(1)公式表示:灰度级范围[0,L-1]时
s=L-1-r0255255当前7页,总共95页。(2)特点:“实现反白”。灰度图像实例当前8页,总共95页。彩色图像实例当前9页,总共95页。(3)应用范围:特别适用于嵌入于图像暗色区域的白色或灰色细节。当前10页,总共95页。2对数变换(1)公式表示
s=c*log(1+r)
(2)特点“扩展低输入,压缩高输入”。(3)应用范围当原图动态范围太大,超出显示设备的范围时,如直接显示原图则一部分细节可能丢失。此时可采用对数变换。如傅里叶频谱的显示。当前11页,总共95页。(4)MATLAB实现
f=imread(‘pout.tif’);F=fft2(f);%FourierTransformFC=fftshift(F);%将变换原点移到频率矩形的中心。
imshow(abs(FC),[]);S2=log(1+abs(FC));figure,imshow(S2,[]);当前12页,总共95页。3幂次变换(1)公式表示(2)特点:非常灵活。(3)应用范围比较广泛,可代替对数变换和反对数变换。当前13页,总共95页。当前14页,总共95页。(4)MATLAB实现语法:g=imadjust(f,[low_inhigh_in],[low_outhigh_out],gamma)
说明:将图像f中的亮度值影响到g中的新值,即将low_in至high_in之间的值映射到low_out至high_out之间的值,low_in以下的值映射为low_out,high_in以上的值映射为high_out。参数gamma指定了映射曲线的形状。
f=imread(‘pout.tif’);imshow(f);g1=imadjust(f,[01],[10]);figure,imshow(g1);g2=imadjust(f,[0.50.75],[10],0.5);figure,imshow(g2);当前15页,总共95页。4分段线性变换(1)对比度拉伸当前16页,总共95页。(2)特点:“压缩两端的背景的动态范围,扩展中段的目标的动态范围”当前17页,总共95页。当前18页,总共95页。(2)灰度切分特点:突出目标的轮廓,消除背景细节特点:突出目标的轮廓,保留背景细节当前19页,总共95页。
3.3直方图处理1直方图(1)概念灰度直方图表示图像中每种灰度出现的像素数目。当前20页,总共95页。(2)直方图的作用当前21页,总共95页。反映一幅图像的灰度分布特性。当前22页,总共95页。(3)归一化直方图的计算式中:nk为图像中出现rk级灰度的像素数,n是图像像素总数,而nk/n即为频数。
随堂练习:计算归一化直方图0123456776543210444444443212321234534534113355776644220067543210当前23页,总共95页。(4)MATLAB实现语法:h=imhist(f,b)
说明:b是用于形成直方图的灰度级的个数。
f=imread(‘pout.tif’);imhist(f);当前24页,总共95页。2直方图均衡化(1)灰度变换函数假说满足以下条件:A、T(r)在区间0≤r≤1中为单值且单调递增;(单值是为了保证反变换的存在;单调递增条件保持输出图像从黑到白顺序增加)B、当0≤r≤1时,0≤T(r)≤1。(输出灰度范围一致)当前25页,总共95页。从s到r的反变换:
r=T
-1(s)当前26页,总共95页。(2)概率密度函数之间的变换当前27页,总共95页。证明:(自学内容)由概率论理论可知,如果已知随机变量ξ的概率密度函数为pr(r),而随机变量η是ξ
的函数,即η=T(ξ),η
的概率密度为ps
(s),所以可由pr(r)求出ps(s)。因为s=T(r)是单调增加的,因此它的反函数r=T-1(s)也是单调函数。在这种情况下,η<s且仅当ξ<r时发生,所以可以求得随机变量η的分布函数为(推导)对上式两边求导,即可得到随机变量η的分布密度函数ps(s)为通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改变图像的灰度层次。这就是直方图修改技术的理论基础。当前28页,总共95页。(3)累积分布函数(CDF)(4)s的概率密度均匀(均衡化)当前29页,总共95页。(5)离散情况下的算法:A、列出原始图像的灰度级
B、统计各灰度级的像素数目C、计算原始图像直方图各灰度级的频数D、计算累积分布函数F、应用以下公式计算映射后的输出图像的灰度级,P为输出图像灰度级的个数,其中INT为取整符号:当前30页,总共95页。G、用映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。当前31页,总共95页。举例:当前32页,总共95页。随堂练习:对下列图像进行直方图均衡化3311133110332113320122110当前33页,总共95页。(6)直方图均衡化的效果
1)由于数字图像是离散的,因此直方图均衡化并不能产生具有理想均衡直方图的图像,但可以得到一幅灰度分布更为均匀的图像。
2)变换后一些灰度级合并,因此灰度级减少。
3)原始象含有象素数多的几个灰级间隔被拉大了,压缩的只是象素数少的几个灰度级,实际视觉能够接收的信息量大大地增强了,增加了图象的反差和图象的可视粒度。
当前34页,总共95页。(7)MATLAB实现语法:g=histeq(f,nlev)
说明:nlev是为输出图像制定的灰度级数。
f=imread(‘tire.tif’);imshow(f);figure,imhist(f);ylim(‘auto’);%自动设定y轴坐标范围和刻度
g=histeq(f,256);figure,imshow(g);figure,imhist(g);ylim(‘auto’);当前35页,总共95页。补充材料:直方图均衡化的缺陷1直方图均衡化的问题
不能实现直方图的理想均衡。2原因分析
数字图像是离散的。直方图均衡化方法是一对一或者多对一的映射关系,即原图像的某一灰度级或某几个灰度级只能映射为均衡化图像的一个灰度级,因此不能实现理想的均衡。3创新思路
要想实现直方图的理想均衡化,就必须破除传统直方图均衡化方法所蕴含的一对一或者多对一映射关系的理论前提,实现灰度级多对多的映射关系。
当前36页,总共95页。4技术路线
(1)邻域测度邻域测度(或邻域算子)定义为:
k>0,是锐化系数。下面解释公式的物理含义。当f(x,y)比它的8邻域均值大时,变换后邻域测度将比f(x,y)大;相应的,当f(x,y)比它的8邻域均值小时,变换后邻域测度将比f(x,y)小。因此,邻域测度(或邻域算子)可以看作为一个锐化算子,k(锐化系数)的大小决定了锐化的强度。当前37页,总共95页。(2)排序对邻域测度空间的值进行由小到大的排序。(3)均匀分段排序完成后,按照原始图像的灰度级数进行均匀分段。例如,如果原始图像是256灰度级的,则均匀分为256段,每段的像素的数目基本相等,最多相差1。(4)均衡化映射按分段的先后顺序,每段中的数据分别赋值为0,1,…,L-1(L为灰度级数)。然后,每段中的每个数据根据在排序过程中保存的位置关系,映射回图像中。当前38页,总共95页。5实验结果
当前39页,总共95页。该创新实例的点评
当前40页,总共95页。
3.4用算术/逻辑操作增强1算术操作(1)加法操作
C(x,y)=A(x,y)+B(x,y)A、图像叠加(特技处理)当前41页,总共95页。
B、图像平均处理(去除噪声)当前42页,总共95页。当前43页,总共95页。
(2)减法操作
C(x,y)=A(x,y)-B(x,y)
减法的最主要作用是突出两幅图像的差异,常用于医学影像中的变化监测,或固定场景中的运动监测。当前44页,总共95页。当前45页,总共95页。当前46页,总共95页。思考题:为什么车辆亮度变暗?当前47页,总共95页。
(3)乘法操作(乘以常数、模板操作等)除法操作(一幅图像乘以另一幅图像的取反)(4)MATLAB实现K1=imadd(I,J);%两幅图像加K2=imsubtract(rice,50);%图像减一个常数K3=immultiply(I,2);%图像乘一个常数K4=imdivide(I,2);%图像除一个常数当前48页,总共95页。
减法例子:
rice=imread(‘rice.tif’);background=imopen(rice,strel(‘disk’,15));rice2=imsubtract(rice,background);subplot(1,2,1),imshow(rice);subplot(1,2,2),imshow(rice2);
加法例子:
I=imread(‘rice.tif’);J=imrea(‘cameraman.tif’);k=imadd(I,J);imshow(K);当前49页,总共95页。
乘法例子:
I=imread(‘moon.tif’);J=immultiply(I,1.2);subplot(1,2,1),imshow(I);subplot(1,2,1),imshow(J);
除法例子:
rice=imread(‘rice.tif’);I=double(rice);J=I*0.43+90;rice2=uint8(J);Ip=imdivide(rice,rice2);imshow(Ip,[]);当前50页,总共95页。
四则运算例子:
I=imread(‘rice.tif’);I2=imread(‘cameraman.tif’);K=imdivide(imadd(I,I2),2);imshow(K);
当前51页,总共95页。2逻辑操作(把灰度值作为二进制串)随堂练习:39的“非”,39和25的“与”及“或”。(1)与、或可用于从一幅图像中提取子图像。当前52页,总共95页。(2)非可以实现图像取反。(3)异或
练习:用第二幅图像对第一图像进行两次异或运算,并写出两次异或运算的结果。(4比特图像)25731234思考题:从这个例子中,我们可以的得到什么启示?当前53页,总共95页。(4)MATLAB实现
MATLAB不提供两幅图像的逻辑操作函数,需要自己编写逻辑操作函数。异或操作可以实现图像的加密和解密。当前54页,总共95页。
3.5空间滤波器基础1邻域处理
对邻域图像和相同大小的子图像进行操作。该子图像被称为滤波器、窗口、掩模、模板或核。(举例:二维)2空间线性滤波在待处理图像中逐点地移动掩模,每点的响应由滤波器系数与滤波掩模扫过的相应像素值得乘积之和给出。当前55页,总共95页。思考题:相关与卷积是什么关系?在什么情况下它们的运算结果是相同的?为什么要引入卷积?当前56页,总共95页。3空间非线性滤波在待处理图像中逐点地移动掩模(该掩模没有滤波器系数),每点的响应取决于所考虑的邻域像素的值,响应与邻域像素的值之间的关系是非线性的。4边界处理(1)掩模中心的移动范围限制在距离图像边缘不小于(n-1)/2个像素处。(2)完全滤波+部分滤波。(3)边缘补零或复制。当前57页,总共95页。
3.6平滑空间滤波1、平滑滤波器的作用(1)减小噪声;(2)模糊处理。2、平滑线性滤波器111111111121242121输出是包含在线性掩模邻域内的简单平均值。当前58页,总共95页。随堂练习:平滑处理1111111115432112345332234455215141当前59页,总共95页。图像的邻域平均法(a)原始图像;(b)邻域平均后的结果
观察下面两幅图,总结邻域平均的效果。当前60页,总共95页。
结论:经过邻域平均法处理后,虽然图像的噪声得到了抑制,但图像细节也变得相对模糊了。当前61页,总共95页。(a)原图像(b)3*3均值滤波(c)5*5均值滤波(d)9*9均值滤波(e)15*15均值滤波(f)36*35均值滤波观察6幅图,总结邻域平均模板大小对滤波结果的影响。当前62页,总共95页。结论:对相同类型的平滑滤波器,滤波器尺寸越大,噪声滤除效果愈好,但细节模糊效应也越强。当前63页,总共95页。MATLAB实现语法:
g=imfilter(f,w,filtering_mode,boundary_options,size_options)
说明:w为滤波掩模f=imread(‘saturn.tif’);w=ones(3);%单位矩阵掩模gd=imfilter(f,w);imshow(gd,[]);当前64页,总共95页。选项描述滤波类型‘corr’滤波器通过使用相关来完成。该值是默认值。‘conv’滤波器通过使用卷积来完成边界选项P输入图像的边界通过用值P来扩展。P的默认值为0。‘replicate’图像大小通过复制外边界的值来扩展。‘symmetric’图像大小通过反射其边界来扩展。‘circular’图像大小通过将图像看成是一个二维周期函数的一个周期来扩展大小选项‘full’输出图像的大小与被扩展图像的大小相同‘same’输出图像的大小与输入图像的大小相同当前65页,总共95页。3、统计排序滤波器(1)定义统计滤波器是一种非线性滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由排序结果决定的值代替中心像素的值。包括最小值滤波器、最大值滤波器、中值滤波器等。(2)中值滤波器1214312234576895768856789234566678当前66页,总共95页。5432112345332234455215141随堂练习:中值滤波;最小值滤波当前67页,总共95页。(3)实例及结论观察以下几个实例,对比中值滤波和邻域平均滤波的各自特点。当前68页,总共95页。图4-24噪声平滑实验图像(a)Lena原图;(b)高斯噪声;(c)椒盐噪声;(d)对(c)平均平滑;(e)对(b)平均平滑;(f)对(b)5×5中值滤波;(g)对(c)5×5中值滤波abcdefg当前69页,总共95页。中值滤波消除雀斑中值滤波消除雀斑当前70页,总共95页。
结论:
1、与平滑滤波器相比,中值滤波在去除噪声的同时,能更好地保持图像的细节。
2、中值滤波器适用于椒盐噪声污染的图像,平滑滤波适用于高斯噪声污染的图像。当前71页,总共95页。
D、MATLAB实现语法:g=ordfilt2(f,order,domain)
说明:使用邻域的一组排序元素中的第oder个元素来代替f中的每个元素,而该邻域则由domain中的非零元素指定。语法:g=medfilt2(f,[mn],padopt)
说明:中值滤波器。padopt指定了三个可能的边界填充选项之一。‘zeros’(默认值)。‘symmetric’,镜像反射。‘indexed’,double类图像,以1填充,否则以0填充。当前72页,总共95页。f=imread(‘eight.tif’);fn=imnoise(f,‘salt&pepper’,0.2);%加椒盐噪声gm=medfilt2(fn);imshow(fn);figure,imshow(gm);当前73页,总共95页。问题:平滑空间滤波器(平滑线性滤波器和统计排序滤波器)在抑制噪声的同时,也模糊了细节,是否存在既抑制噪声、又保持细节的滤波器呢?当前74页,总共95页。图像边缘保持类噪声滤波器:(1)k近邻平滑滤波器(2)灰度最小方差的均值滤波器(3)对称近邻均值滤波器(4)∑平滑滤波器(几何均值滤波器)
…当前75页,总共95页。3*3均值滤波器9近邻均值滤波器性能分析:边界保持类滤波器细节更清楚,但耗时较长。当前76页,总共95页。有兴趣的同学,能否自学一些边界保持类滤波器后,设计一种新的边界保持类滤波器呢?当前77页,总共95页。
3.7锐化空间滤波器锐化空间滤波其的性能:(1)突出图像中的细节或增强被模糊的细节;(2)加大了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论