




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
May2022
EnergyNetworksintheEnergyTransitionEra
OIESPaper:EL48RahmatallahPoudineh,SeniorResearchFellow,OIES
i
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonot
necessarilyrepresenttheviewsoftheOxfordInstituteforEnergyStudiesoranyof
itsmembers.
Copyright©2022
OxfordInstituteforEnergyStudies
(RegisteredCharity,No.286084)
Thispublicationmaybereproducedinpartforeducationalornon-profitpurposeswithoutspecial
permissionfromthecopyrightholder,providedacknowledgmentofthesourceismade.Nouseofthis
publicationmaybemadeforresaleorforanyothercommercialpurposewhatsoeverwithoutprior
permissioninwritingfromtheOxfordInstituteforEnergyStudies.
ISBN978-1-78467-199-0
ii
Abstract
Asinfrastructuresthatconnecttheenergysourcewiththeenergyuse,energynetworksconstituteacrucialelementofnationalandglobalenergysystems.Theyalsoplayakeyroleinhelpingwithbalancingsupplyanddemand,thusensuringthatenergyisnotonlyavailableintherightplacesbutalsoattherighttime.Energytransitionwillhavesignificantimpacts,thoughnotnecessarilyinthesameway,onexistingenergynetworks,forexample,electricityandnaturalgasgrids,andmightleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcoolingandthedeploymentofnewinfrastructurestosupporttheuseofhydrogen.Understandingtheimplicationsofenergytransitionforenergynetworks,andthewaysinwhichtheseinfrastructuresshouldadapttothechallengesofdecarbonization,isimportanttoachievenet-zerocarbonobjectives.Thispaperexploressomeofthekeyissuesfacedbyelectricitytransmissionanddistributionnetworks;naturalgasnetworks;andfuturehydrogen,heating,andcoolingnetworksinthetransitionofenergysystems.Also,asfuturedecarbonizedenergysystemsarelikelytoexhibitsignificantlymoreinteractionbetweendifferentpartsofthesystem,thispaperexplorespossibleapproachestoutilizingthesynergiesbetweenenergynetworksandbenefitingfromtheirintegratedoperationtolowerthecostsandchallengesofdecarbonization.
iii
Contents
Abstract ii
Figures iii
Tables iii
1.Introduction 1
2.Energynetworks 2
2.1Electricitytransmissionnetworks 2
2.1.1Theeffectofmarketdesign 5
2.1.2Electricitydistributionnetworks 5
2.2Naturalgasnetworks 8
2.3Hydrogennetwork 11
2.4Heatingandcoolingnetworks 12
3.Integratedenergynetworks 16
4.Summaryandconclusions 19
References 22
Figures
Figure1:Naturalgasinprimaryenergyinglobalwholeenergysystemscenariosthatmeeta1.5°C
warmingtarget 9
Figure2:YearlyheatdemandintheUKacrosssectors(2019) 13
Figure3:Globalenergyconsumptionforspacecoolinginbuildings 15
Figure4:Shareofheating/coolingdemandmetthroughdistrictenergysystemsinselectedcountries 15
Figure5:Threelayersofanintegratedapproachtonetworkplanningandoperation 17
Figure6:IllustrativepossibleinteractionsbetweendifferentenergynetworksintheUK 18
Tables
Table1:Transformationoftheelectricitysystemanditsimplications 3
Table2:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions 4
1
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
1.Introduction
Energynetworksareinfrastructuresthatconnecttheenergysourcewiththeenergyuseandthusconstituteacrucialelementofnationalandglobalenergysystems.Overthelasthundredyears,thenetworks(especiallyelectricityandgas)haveevolvedfromlocalsimplegridsintocomplexinfrastructuresthattransferenergynotonlywithinnationalboundariesbutalsoacrossbordersinareliableandefficientmanner.
Thenet-zerocarbontargetwillresultinasignificantchangeinenergysystemswithsignificantimplicationsforexistingenergynetworks.Itmayalsoleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcooling,andpotentiallygiverisetonewinfrastructuretosupportthedeliveryanduseofhydrogen.
Theelectricitynetworks,inparticular,arefacingsignificantchangesasaresultofthetransformationcurrentlyunderwayintheenergysystem.Electricityisthefastestgrowingconsumerenergybecauseoftherolethatitisexpectedtoplayinthedecarbonizationofthetransport,buildingandindustrialsectors.Traditionally,electricitywasgeneratedinlargecentralizedthermalorhydropowerplants,whichfeedintoatransmissiongridthatconnectsindustrialloadsandsuppliessmallerconsumersthroughdistributiongrids(IEA,2021).Thedesignoftransmissiongridswassuchthatpowerflowsbetweenpowerplantsandmainconsumptioncentreswithinaspecificregionwereeasilyaccommodatedwithoutstructuralcongestion.However,renewableenergyresourcessuchasonshorewindfarms,utility-scalesolarfacilities,andoffshorewindfarmsareoftenlocatedfarfromloadcentres,whilethermalgenerationplantsareeitherbeingphasedoutorforcedoutofthemarketbycheaprenewables.Atthesametime,thereisahugegrowthinsmallerdistributedenergyresources(DERs)onthedistributiongrid.Thesedevelopmentswillchangetheflowpatternwithintheelectricitynetworksandmaycreatenewconstraints,andthusnecessitatemoreefficientutilizationofexistinggridassets,newgridinvestments,andinsomecasesevennewoverallgridandelectricitymarketdesigns.
TheriseofDERs,andthedecentralizationparadigminparticularisupendingthebalancebetweentheelectricitytransmissionanddistributionsectors.Distributiongrids,whichhavehistoricallybeenpassiveandaddressedgridconstraintsthroughoverengineering,arenowbecomingmoreactive.Alongwiththeneedfornewrules,thisalsomeansnewrolesfordistributionsystemoperators(DSOs)tofacilitateefficientintegrationofDERswhileachievingahigherlevelofcoordinationwiththetransmissionsystemoperator(TSO).ThisistoimprovevisibilityandcontroloverDERsandavoidpotentialconflictbetweenDSOsandtheTSO.
Apartfromelectricity,naturalgasisanothermajorenergynetworkinmanycountries.However,thefutureofthenaturalgasgridisuncertain,especiallyatthelow-pressuredistributionlevel.Itpartlydependsonfutureenergyservicescenariosinwhichnaturalgasisprimarilyused,forexample,forheating,andpartlyonthetechnologicalprogressmadetolowerthecostsofcarboncaptureandstorage.Theuseofnaturalgasnetworksmustchangeifthesenetworksaretoplayaroleunderthenet-zerocarbonobjective.Low-carbonalternativessuchashydrogenareapotentialreplacementfornaturalgasbutarangeofchallengesexists.Forexample,astheshareofnaturalgasdeclines,availablevolumesofhydrogenmaynotbesufficienttojustifyadjustingtheexistingnaturalgasinfrastructures.Also,hydrogencanbetransportednotonlyviaarepurposedgasnetwork(ornewpipeline),butalsoviaavailablepowerandtransportationnetworks,suchasbyrail,road,andonwaterways.Thismeansthat,despitetheefficiencyofpipelines,repurposingthegasnetworkmightnotalwaysbetheoptimalsolution.
Thereareotherenergynetworksemergingtoaddressthechallengesofdecarbonizingtheheatingandcoolingsectors.Heatnetworkscurrentlyhavelittleenergydemandmarketsharegloballybut,giventheiradvantageoverindividualheatingsystemsandalsothegrowingurgencyofdecarbonizingheatinginthebuildingsector,theirshareisexpectedtoincrease.IntheUK,forexample,theenergydemand
2
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
forheatingaccountsformorethan40percentofallenergyuseandcontributestoaroundone-thirdofcarbonemissions.Underfavourableregulatoryandpolicyconditions,districtheatingcouldbecomethemainmethodofprovidingheattobuildingsinhigh-densitybuiltenvironments,suchascitycentresandcampuses,aswellassomeruraloff-gasgridcommunitiesinthiscountry.
Coolingnetworksarelesscommoncomparedwithdistrictheating,butwiththeriseindemandforspacecoolingintheGlobalSouththesenetworksmayalsogainmoreimportance.IntheUnitedArabEmirates,districtcoolingcurrentlyprovidesmorethanone-fifthofthecoolingload(IRENA,2017b).Theeconomiesofscaleandincreasedefficiencyofprovidingcentralizedspacecooling,comparedwithindividualair-conditioningsystems,canreducetheircostssignificantly.Similartodistrictheating,districtcoolingalsorequiresappropriatepoliciesandregulationstofacilitateitsdeploymentinplaceswithhigh-loaddensity.
Asenergysystemsbecomemorecomplexduetodecarbonization,decentralizationanddigitalizationtrends,theimportanceofenergynetworksascriticalinfrastructuresthatexploitandfacilitatetemporalandspatialdiversityinenergyproductionandconsumptionincreases.Itisthusnecessarytounderstandhowbesttodesign,regulate,integrateandoperateexistingandemergingenergynetworksinordertobenefittheentireenergysystem.Currently,energynetworks,whethertheybeelectricity,gas,heatingorcooling,arecommonlyplannedandoperatedindependently,whichresultsinalossofsynergiesandefficiency(Hosseini,2020).Theseseparateinfrastructuresarenowincreasinglybecominginterconnectedthroughnetworkcouplingtechnologies,suchascombinedcyclegasturbines(CCGT);combinedheatandpowerunits(CHP);andpower-to-Xtechnologies,suchashydrogen,ammonia,heating,cooling,andheatpumps.Anintegratedapproachtotheplanningandoperationofthesenetworkscanlowertheuseofprimaryenergy,provideflexibilitytointegratevariablerenewableenergyresourcesandlowerthecostofachievinganet-zerotarget.Thishoweverentailsaddressingarangeofoperational,regulatory,andgovernanceissues.1
Theoutlineofthispaperisasfollows:Section2discussesissueswhichindividualenergynetworksarefacingduringtheenergytransition,startingwithelectricitytransmissionanddistributiongridsthengoingontonaturalgasandhydrogengridsandfinishingwithheatingandcoolingnetworks.Section3discussestheideaofanintegratedenergynetwork.Finally,Section4providesasummaryandconclusions.
2.Energynetworks
Energynetworksareinfrastructuresthattransferenergyfromtheproductionsourcetotheconsumers’premises.Theyconstitutevariousformsoftechnologiesrangingfromestablishednetworks,suchaselectricityandnaturalgas,toemerginggrids,suchashydrogen,heating,andcooling.Inthissection,webrieflyrevieweachofthesenetworksandhighlightthechallengesandopportunitiestheyfaceasaresultoftheenergytransition.
2.1Electricitytransmissionnetworks
Aswemovetowardsanet-zerocarboneconomy,theelectricitysectorisexperiencingaprofoundtransformation(BEIS,2021a).Onthesupplyside,theriseofrenewableenergyresourceshasledtopowergenerationbecomingincreasinglyvariableanduncertainwhilethepenetrationofDERsimpliesashiftofvaluefromtransmissiontothedistributionlevelduetodecentralization.Onthedemandside,electricitydemandisnotonlyexpectedtorise,duetotheincreasedelectrificationofactivitiesandprocesses,butmayalsobecomemoreuncertainbecauseofthenatureofnewlyelectrifiedactivities
1Theseincludeeconomicissues,suchascoordinationinthepresenceoffragmentedinstitutionalandmarketstructuresofdifferentenergysystems,aswelltechnicalchallenges,suchaspreventingcascadingfailures,loweringvulnerability,andimprovingtheresilienceofintegratedenergynetworks(Tayloretal.,2022).
3
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
(forexample,electricvehiclescanpotentiallychargeatanytimeandatanylocationonthenetwork).Inaddition,networkusersarebecomingmoreactiveasdigitalizationandautomationlowerthetransactioncostsofinteractingwiththeelectricitysystem.Theseallhaveimplicationsfortheentireelectricitysystem,includingthenetworkinfrastructure(seeTable1).
Table1:Transformationoftheelectricitysystemanditsimplications
Transformationofthepowersystem
Generation
Variableanduncertainrenewablegeneration
Distributedenergyresources
Energystorage
Electricitydemand
Theriseofelectricityconsumption(e.g.datacentres,
electricvehicles,heatpumps,air-conditioning)
Increaseinuncertaintyofdemand
Networkusers
Activenetworkusers(sumers,energy
communities)
Communicationandcontrol
Digitalizationandautomation
Implicationsforthepowersystem
Initialfocus
Presentfocus
Planning
Renewable
generation
Capacitygrowth
Systeminteraction,integrationcosts
Network
infrastructure
Sufficientcapacitytoaccommodateallusers
Market-basedanddifferentiatedgridaccessregime,competition,costallocation,coordinationwithgeneration
Operation
Reliabilityoperationalsecurity
and
Throughmarket
energy-only
Searchfornewparadigm
Flexibility
Fromconventionalpowerplants
Newsolutions(e.g.DERs,demandresponse,energystorage)andnewincentivesandframeworksforflexibleservices
Source:author
Indeed,adifferentelectricitynetworkisneededcomparedtowhatwehadinthepast.Electricitynetworksrequirehighercapacityandinterconnectionsaswellasmoreefficientapproachestocaterfortheriseintheelectricitydemandandtheincreasedcomplexityandchallengeinasystembalancingsupplyanddemand.
Althoughdecentralizationimpliesthatanincreasinglyhigherproportionofgenerationfacilitiesarelocatedonthedistributionside,significantinvestmentinthetransmissionnetworksisstillrequiredduetothediversegeographicallocationofnewmajorresources,suchasonshoreandoffshorewindfarms,aswellastheincreasedneedforinterconnectivitybetweenelectricitymarkets.
Therearetwoimportantpointswhenitcomestoexpandingthetransmissiongrid.First,thedesignandconstructionofnewtransmissionassetsisacomplexandcostlyprocesswithalongleadtime.Second,thereisstilluncertaintyaboutthetimingandpaceofdecarbonizationofheatingandtransportaswellastheextenttowhichelectrificationcanoutcompetealternativeoptionsinallapplicationsoftheseservices.Thissuggeststhatfuturenetworkinvestmentsneedtoberobustinthefaceofarangeofpossibletransitionpathwayoutcomesforthesetwosectors.
Akeyconcernassociatedwithtraditionalnetworkinvestmentmodelsisrelatedtoeconomicefficiencyandtheirnarrowfocusonasset-basedsolutions,withoutconsideringthefactthatwhilegridexpansioniscrucial,lowercostsandtimelysolutionsmustbeaddressedfirst.Asanexample,consideraregion
4
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
inwhichthereisanexcesssupplyofwindgenerationbutlowdemandduetolowerpopulationdensity,whichresultsinatransmissionconstraint.Thestandardsolutiontothischallengeinthepasthasbeentoaddanewwirethatconnectstheareawherethereisovergenerationtothenearesthighdemandcentre.AsseeninTable2,thedeploymentofanewtransmissionlineisoneoffivepossiblesolutionsforthisproblem.Indeed,thisproblemcanbesolvedbyabattery;anaggregator;avoltageserviceprovider;orasinglelargeindustrialdemand,suchasanelectrolyser,whichcanabsorbtheovergeneration.
Table1:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions
Transmissionconstraintexample:thereisahighlevelofwindpowergenerationinanareawithlowerdemand
Solution1:addingawiretoconnectthehighsupplyareatoanareaofhighdemand
Solution2:deployingabatterythatstoresenergywhensupplyishighandreleasesitbacktothegridwhendemandishigh
Solution3:anaggregatorwhichcanaggregatedemandwiththeabilitytoturnitupordownwhenneededtomatchthesupply
Solution4:avoltageserviceproviderthatcanrespondtotheparticularchallengeofasurgeinelectricitysupplyasresultofasuddenincreaseinwindgeneration
Solution5:asinglelargeindustrialdemand,suchaselectrolysers,whichcanreacttowindpowergenerationsurges
Source:adaptedfromBEIS(2021a)
Theproblemisthatwhennetworkcompaniesarenotincentivizedtoconsiderwidersolutionstogridconstraints,Solution1isalmostalwaysthepreferredchoiceevenifitiseconomicallyinefficient.Thisisbecausenetworkcompanieshaveabiastowardsasset-basedsolutionsasnoneoftheotherapproachesincreasethenetworkcompany’sregulatoryassetbase,thusallowingittoreceiveareturn.Onthecontrary,implementingothersolutionsmayevenresultinlowerrevenueforthenetworkcompanyifthevolumeofenergytransportedinthegriddeclines.
Thisisspecificallythecasewhenthenetworkoperatorandnetworkownerarethesameorganizationandwasoneofthereasonsthat,intheUK,theNationalGridElectricitySystemOperator(NGESO)waslegallyseparatedfromthetransmissionowner,NationalGridElectricityTransmission(NGET),althoughtheybothbelongtothesamegroup—theNationalGrid(NG)Group.Therearenowdiscussionstogoevenfurtherandestablishanindependentenergysystemoperatorwhichhasabsolutelynointerestinregulatedelectricityandgasassets.
Therefore,aligningtheincentiveofthenetworkcompaniesiscriticaltoachieveinvestmentefficiency.Althoughthemarketfornon-networksolutionsatthetransmissionlevelmightnotbewell-developedattheoutset,theintroductionofspecificincentivescanencouragethird-partyproviderstoinnovateandgrow,especiallyasthetechnologyadvances.
Theincreaseintherangeofsolutionsalsoallowsforthepossibilityofutilizingmarketmechanismsandcompetitioninasupplychainsegmentthathastraditionallybeenconsideredasanaturalmonopoly.However,giventhatthetypeofnetworkconstraintaffectstherangeofsolutionsavailabletofixthem,anauctionfortheprocurementofsolutionscanbearrangedindifferentways.Sometimesanetworkconstraintmayhaveaclearuniquesolutionandothertimestheremightbearangeofpossiblesolutions.Thus,thecompetitiontoprocurenetworkservicesneedstoaccountfortheseidiosyncrasiesinthetypeofnetworkconstraintsandassociatedsolutions.IntheUK,withdiscussionsaboutintroducingcompetitioninonshoretransmissionnetworks,theregulatoristryingtodesignacompetitionframeworkthataccommodatesthesecomplexities.‘Earlycompetition’issuggestedincaseswhereagridconstraintisidentifiedbutthetenderhappenspriortothesurvey,consent,anddetaileddesignoftheassetbeingdevelopedsothewholeprocessofdesigning,constructing,anddeliveringthesolutionis
5
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
tenderedfor(BEIS,2021).Thisistoallowforthefactthattheelectricitysystemischangingandmoresolutionsmightbecomeavailablebythetimethetenderhappens.The‘latecompetition’modelisproposedwhenthenetworkproblemisidentifiedandthesolutionisdecidedsothecompetitiontakesplacetobuild,own,andoperatetheagreedsolution.
Despitetheappealofacompetitionforatransmissionnetworkinfrastructure,therearesomeimportantissuesthatneedtobeconsideredforthechoiceofsolutionandtheassociatedauction.First,theleadtimeoftransmissionprojectsishigh,whilethechangeinthegenerationanddemandpatternsisveryuncertaingivencurrentdevelopmentsintheelectricitysector.Thissuggeststhattheneedforactualtransmissioninvestmentcanalterbythetimeaprojectisdelivered.Second,thereisahighlevelofuncertaintyinthecostoftransmissionprojectsandtherearemanyfactors,suchasmeetingplanningrequirements,thatcanaffecttheoutturncostbutcannotbefullyaccountedforatthetimeofdecision.Third,theeffectoftheseproceduresonothercompetitionmechanisms,suchasthoserelatedtosystemservices(runbytheelectricitysystemoperator)orflexibilitytenders(runbythedistributionnetworkoperator),needtobecarefullyexamined.Therefore,introducingcompetitionfortheprocurementofnetworkservicesrequirescarefuldesignandimplementation.
2.1.1Theeffectofmarketdesign
Thediscussionaboutnetworkoperationanddevelopmentcannotbedecoupledfromthedebateonthedesignoftheelectricitymarket.Theriseofvariableanduncertaingeneration,andthefactthattherenewableresourcesareoftenlocatedawayfromtheloadcentre,willchangetheexistingpatternsofflowinelectricitynetworksandthusresultinnewconstraints.Thechallengeisthatlocalcongestion,whetherintransmissionordistribution,isnotreflectedinelectricitymarketpricesinmostplacesaroundtheworldduetothesuboptimaldesignoftheelectricitymarket.Europeanelectricitymarkets,forexample,arestructuredaroundbiddingzones,whichmeansintrazonalcongestioncanbecomeapersistentchallenge.Currently,transmissionsystem’sconstraintsaremanagedbycost-basedormarket-basedregulatedredispatchoftheflexibilityresourcesinthezone.However,thiscanattimesbeverycostly.
Thekeychoicestoaddresstransmissioncongestion,inthecontextoftheEuropeanelectricitymarketdesign,areeithertoexpandthenetworkortoreconfigurebiddingzonessuchthattheyreflecttheactualstructuralcongestion.Networkexpansionisnotalwaysthemostcost-efficientsolution.Furthermore,thereisnoguaranteethatinthefuturenewstructuralcongestionwouldnotariseafterthenetworkhasbeenexpanded.Animprovedzonalmodelwithadequatedemarcationofbiddingzonescanbeacheapersolutionthannetworkreinforcement.However,apartfromthechallengesofimplementingawell-definedbiddingzone,itisalsosusceptibletoso-calledincrease-decrease(inc-dec)gamingopportunities.
Fromamarketdesignperspective,locationalmarginalpricing(LMP),alsocallednodalpricing,istheoptimumapproachtoutilizethegridefficiently.Inthismodel,thepriceateachnodeofthegridrepresentstheactualcostofsupplyingthatparticularnodegiventhenetworkconstraint.Thus,unlikezonalpricing,LMPtakesintoaccountthephysicalcharacteristicsofthegridwhichmeansno‘outofmarket’instrumentsarerequiredtoaddresscongestion,meaningthereisnoneedforredispatchofflexibilityservices.Itisalsolessvulnerableto‘inc-dec’games.Nonetheless,theimplementationofLMPinthecontextoftheEuropeanelectricitymarketisunlikelytobestraightforwardassuchashiftwouldimplymajorchangesformoststakeholdersinthemarket.
2.1.2Electricitydistributionnetworks
Electricitydistributionnetworksareexpectedtobearthebruntoffurtherelectrificationoftransportandheatingservices.Theiroperatingenvironmentisalsofast-changingduetotherapidgrowthofDERsandtheriseofprosumers.Asaresult,thesenetworksneedtooperateunderconditionsofincreasedvariableloadandgenerationaswellasmorefrequentcongestion.Therearethreeregulatory
6
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
instrumentsthatplayacriticalroleinaddressingthechallengesthatdistributionnetworksfaceduringthetransitionera(Gómezetal.,2020).
Thefirstinstrumentisthegridaccessregime.Traditionallygridaccess,forbothconsumersandgenerators,isprovidedonafirmbasis.Thefirmaccessmodelallowsuserstowithdrawand/orinjecttothenetworkuptothemaximumcapacity2oftheinstalledfuseatanytimeorlocation.Despiteitssimplicitygivenlackofneedforreal-timemanagementofinjectionsandwithdrawalbythegridoperator,firmaccessisaninefficientapproach.Thisisbecause,underthisregime,alargepartofthenetworkcapacityisidleasnetworkcomponentsareoftenusedattheirratedvalueonlyforverylimitedtimesoftheyear.Firmaccessalsopreventsnewusersfrombeingconnectedwheneveryuserisgivenagridaccessoptionattheirmaximumratedcapacity.
Anon-firmoraflexibleaccessregime,ontheotherhand,isbetteralignedwiththerequirementforfastandefficientgridconnectioninanelectricitysystemwhichisexperiencingrapidgrowthofrenewableanddistributedenergyresources.Aflexibleconnectionprovidesthenetworkoperatorwiththerighttomanagetheuserfeed-inorconsumptioninexchangeforincentivessuchasdirectrenumeration,arebateongridconnectioncosts,fasterconnection,orsimplytherighttoconnectratherthanrefuseacustomer’sconnectionapplication.Inthisway,theneedforfurthernetworkreinforcementdeclinesandmoreuserscanbeac
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市浦东新区川沙中学2025届高考仿真模拟化学试卷含解析
- 河北省“五个一联盟”2025年高三下学期联合考试化学试题含解析
- 2025年跨境电商产业园合作协议书
- 2025年重组葡激酶项目合作计划书
- 2025届江西省南昌市东湖区第十中学高考压轴卷化学试卷含解析
- 心律失常患者护理
- 2025届上海市静安区高考化学三模试卷含解析
- 2025届青海省西宁市城西区海湖中学高考化学二模试卷含解析
- 2025年化学材料:灌浆料合作协议书
- 四年级数学(三位数乘两位数)计算题专项练习及答案
- 书香浸润心灵 阅读伴我成长读书伴我成长主题班会课件
- 完工工程量确认单
- 国开土地利用规划形考任务1-4答案
- 岗位价值评估表
- 学校食堂招标书学校食堂招标书
- 遵义会议与遵义会议精神简化版教学课件
- 安全隐患排查情况登记表(学生宿舍)
- 经阴道无张力尿道中段吊带术术
- 《病毒》优质课一等奖课件
- 权责发生制课件ppt
- 气化炉的类型
评论
0/150
提交评论