能源转型时代的能源网络-Energy Networks in the Energy Transition Era_第1页
能源转型时代的能源网络-Energy Networks in the Energy Transition Era_第2页
能源转型时代的能源网络-Energy Networks in the Energy Transition Era_第3页
能源转型时代的能源网络-Energy Networks in the Energy Transition Era_第4页
能源转型时代的能源网络-Energy Networks in the Energy Transition Era_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

May2022

EnergyNetworksintheEnergyTransitionEra

OIESPaper:EL48RahmatallahPoudineh,SeniorResearchFellow,OIES

i

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonot

necessarilyrepresenttheviewsoftheOxfordInstituteforEnergyStudiesoranyof

itsmembers.

Copyright©2022

OxfordInstituteforEnergyStudies

(RegisteredCharity,No.286084)

Thispublicationmaybereproducedinpartforeducationalornon-profitpurposeswithoutspecial

permissionfromthecopyrightholder,providedacknowledgmentofthesourceismade.Nouseofthis

publicationmaybemadeforresaleorforanyothercommercialpurposewhatsoeverwithoutprior

permissioninwritingfromtheOxfordInstituteforEnergyStudies.

ISBN978-1-78467-199-0

ii

Abstract

Asinfrastructuresthatconnecttheenergysourcewiththeenergyuse,energynetworksconstituteacrucialelementofnationalandglobalenergysystems.Theyalsoplayakeyroleinhelpingwithbalancingsupplyanddemand,thusensuringthatenergyisnotonlyavailableintherightplacesbutalsoattherighttime.Energytransitionwillhavesignificantimpacts,thoughnotnecessarilyinthesameway,onexistingenergynetworks,forexample,electricityandnaturalgasgrids,andmightleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcoolingandthedeploymentofnewinfrastructurestosupporttheuseofhydrogen.Understandingtheimplicationsofenergytransitionforenergynetworks,andthewaysinwhichtheseinfrastructuresshouldadapttothechallengesofdecarbonization,isimportanttoachievenet-zerocarbonobjectives.Thispaperexploressomeofthekeyissuesfacedbyelectricitytransmissionanddistributionnetworks;naturalgasnetworks;andfuturehydrogen,heating,andcoolingnetworksinthetransitionofenergysystems.Also,asfuturedecarbonizedenergysystemsarelikelytoexhibitsignificantlymoreinteractionbetweendifferentpartsofthesystem,thispaperexplorespossibleapproachestoutilizingthesynergiesbetweenenergynetworksandbenefitingfromtheirintegratedoperationtolowerthecostsandchallengesofdecarbonization.

iii

Contents

Abstract ii

Figures iii

Tables iii

1.Introduction 1

2.Energynetworks 2

2.1Electricitytransmissionnetworks 2

2.1.1Theeffectofmarketdesign 5

2.1.2Electricitydistributionnetworks 5

2.2Naturalgasnetworks 8

2.3Hydrogennetwork 11

2.4Heatingandcoolingnetworks 12

3.Integratedenergynetworks 16

4.Summaryandconclusions 19

References 22

Figures

Figure1:Naturalgasinprimaryenergyinglobalwholeenergysystemscenariosthatmeeta1.5°C

warmingtarget 9

Figure2:YearlyheatdemandintheUKacrosssectors(2019) 13

Figure3:Globalenergyconsumptionforspacecoolinginbuildings 15

Figure4:Shareofheating/coolingdemandmetthroughdistrictenergysystemsinselectedcountries 15

Figure5:Threelayersofanintegratedapproachtonetworkplanningandoperation 17

Figure6:IllustrativepossibleinteractionsbetweendifferentenergynetworksintheUK 18

Tables

Table1:Transformationoftheelectricitysystemanditsimplications 3

Table2:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions 4

1

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

1.Introduction

Energynetworksareinfrastructuresthatconnecttheenergysourcewiththeenergyuseandthusconstituteacrucialelementofnationalandglobalenergysystems.Overthelasthundredyears,thenetworks(especiallyelectricityandgas)haveevolvedfromlocalsimplegridsintocomplexinfrastructuresthattransferenergynotonlywithinnationalboundariesbutalsoacrossbordersinareliableandefficientmanner.

Thenet-zerocarbontargetwillresultinasignificantchangeinenergysystemswithsignificantimplicationsforexistingenergynetworks.Itmayalsoleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcooling,andpotentiallygiverisetonewinfrastructuretosupportthedeliveryanduseofhydrogen.

Theelectricitynetworks,inparticular,arefacingsignificantchangesasaresultofthetransformationcurrentlyunderwayintheenergysystem.Electricityisthefastestgrowingconsumerenergybecauseoftherolethatitisexpectedtoplayinthedecarbonizationofthetransport,buildingandindustrialsectors.Traditionally,electricitywasgeneratedinlargecentralizedthermalorhydropowerplants,whichfeedintoatransmissiongridthatconnectsindustrialloadsandsuppliessmallerconsumersthroughdistributiongrids(IEA,2021).Thedesignoftransmissiongridswassuchthatpowerflowsbetweenpowerplantsandmainconsumptioncentreswithinaspecificregionwereeasilyaccommodatedwithoutstructuralcongestion.However,renewableenergyresourcessuchasonshorewindfarms,utility-scalesolarfacilities,andoffshorewindfarmsareoftenlocatedfarfromloadcentres,whilethermalgenerationplantsareeitherbeingphasedoutorforcedoutofthemarketbycheaprenewables.Atthesametime,thereisahugegrowthinsmallerdistributedenergyresources(DERs)onthedistributiongrid.Thesedevelopmentswillchangetheflowpatternwithintheelectricitynetworksandmaycreatenewconstraints,andthusnecessitatemoreefficientutilizationofexistinggridassets,newgridinvestments,andinsomecasesevennewoverallgridandelectricitymarketdesigns.

TheriseofDERs,andthedecentralizationparadigminparticularisupendingthebalancebetweentheelectricitytransmissionanddistributionsectors.Distributiongrids,whichhavehistoricallybeenpassiveandaddressedgridconstraintsthroughoverengineering,arenowbecomingmoreactive.Alongwiththeneedfornewrules,thisalsomeansnewrolesfordistributionsystemoperators(DSOs)tofacilitateefficientintegrationofDERswhileachievingahigherlevelofcoordinationwiththetransmissionsystemoperator(TSO).ThisistoimprovevisibilityandcontroloverDERsandavoidpotentialconflictbetweenDSOsandtheTSO.

Apartfromelectricity,naturalgasisanothermajorenergynetworkinmanycountries.However,thefutureofthenaturalgasgridisuncertain,especiallyatthelow-pressuredistributionlevel.Itpartlydependsonfutureenergyservicescenariosinwhichnaturalgasisprimarilyused,forexample,forheating,andpartlyonthetechnologicalprogressmadetolowerthecostsofcarboncaptureandstorage.Theuseofnaturalgasnetworksmustchangeifthesenetworksaretoplayaroleunderthenet-zerocarbonobjective.Low-carbonalternativessuchashydrogenareapotentialreplacementfornaturalgasbutarangeofchallengesexists.Forexample,astheshareofnaturalgasdeclines,availablevolumesofhydrogenmaynotbesufficienttojustifyadjustingtheexistingnaturalgasinfrastructures.Also,hydrogencanbetransportednotonlyviaarepurposedgasnetwork(ornewpipeline),butalsoviaavailablepowerandtransportationnetworks,suchasbyrail,road,andonwaterways.Thismeansthat,despitetheefficiencyofpipelines,repurposingthegasnetworkmightnotalwaysbetheoptimalsolution.

Thereareotherenergynetworksemergingtoaddressthechallengesofdecarbonizingtheheatingandcoolingsectors.Heatnetworkscurrentlyhavelittleenergydemandmarketsharegloballybut,giventheiradvantageoverindividualheatingsystemsandalsothegrowingurgencyofdecarbonizingheatinginthebuildingsector,theirshareisexpectedtoincrease.IntheUK,forexample,theenergydemand

2

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

forheatingaccountsformorethan40percentofallenergyuseandcontributestoaroundone-thirdofcarbonemissions.Underfavourableregulatoryandpolicyconditions,districtheatingcouldbecomethemainmethodofprovidingheattobuildingsinhigh-densitybuiltenvironments,suchascitycentresandcampuses,aswellassomeruraloff-gasgridcommunitiesinthiscountry.

Coolingnetworksarelesscommoncomparedwithdistrictheating,butwiththeriseindemandforspacecoolingintheGlobalSouththesenetworksmayalsogainmoreimportance.IntheUnitedArabEmirates,districtcoolingcurrentlyprovidesmorethanone-fifthofthecoolingload(IRENA,2017b).Theeconomiesofscaleandincreasedefficiencyofprovidingcentralizedspacecooling,comparedwithindividualair-conditioningsystems,canreducetheircostssignificantly.Similartodistrictheating,districtcoolingalsorequiresappropriatepoliciesandregulationstofacilitateitsdeploymentinplaceswithhigh-loaddensity.

Asenergysystemsbecomemorecomplexduetodecarbonization,decentralizationanddigitalizationtrends,theimportanceofenergynetworksascriticalinfrastructuresthatexploitandfacilitatetemporalandspatialdiversityinenergyproductionandconsumptionincreases.Itisthusnecessarytounderstandhowbesttodesign,regulate,integrateandoperateexistingandemergingenergynetworksinordertobenefittheentireenergysystem.Currently,energynetworks,whethertheybeelectricity,gas,heatingorcooling,arecommonlyplannedandoperatedindependently,whichresultsinalossofsynergiesandefficiency(Hosseini,2020).Theseseparateinfrastructuresarenowincreasinglybecominginterconnectedthroughnetworkcouplingtechnologies,suchascombinedcyclegasturbines(CCGT);combinedheatandpowerunits(CHP);andpower-to-Xtechnologies,suchashydrogen,ammonia,heating,cooling,andheatpumps.Anintegratedapproachtotheplanningandoperationofthesenetworkscanlowertheuseofprimaryenergy,provideflexibilitytointegratevariablerenewableenergyresourcesandlowerthecostofachievinganet-zerotarget.Thishoweverentailsaddressingarangeofoperational,regulatory,andgovernanceissues.1

Theoutlineofthispaperisasfollows:Section2discussesissueswhichindividualenergynetworksarefacingduringtheenergytransition,startingwithelectricitytransmissionanddistributiongridsthengoingontonaturalgasandhydrogengridsandfinishingwithheatingandcoolingnetworks.Section3discussestheideaofanintegratedenergynetwork.Finally,Section4providesasummaryandconclusions.

2.Energynetworks

Energynetworksareinfrastructuresthattransferenergyfromtheproductionsourcetotheconsumers’premises.Theyconstitutevariousformsoftechnologiesrangingfromestablishednetworks,suchaselectricityandnaturalgas,toemerginggrids,suchashydrogen,heating,andcooling.Inthissection,webrieflyrevieweachofthesenetworksandhighlightthechallengesandopportunitiestheyfaceasaresultoftheenergytransition.

2.1Electricitytransmissionnetworks

Aswemovetowardsanet-zerocarboneconomy,theelectricitysectorisexperiencingaprofoundtransformation(BEIS,2021a).Onthesupplyside,theriseofrenewableenergyresourceshasledtopowergenerationbecomingincreasinglyvariableanduncertainwhilethepenetrationofDERsimpliesashiftofvaluefromtransmissiontothedistributionlevelduetodecentralization.Onthedemandside,electricitydemandisnotonlyexpectedtorise,duetotheincreasedelectrificationofactivitiesandprocesses,butmayalsobecomemoreuncertainbecauseofthenatureofnewlyelectrifiedactivities

1Theseincludeeconomicissues,suchascoordinationinthepresenceoffragmentedinstitutionalandmarketstructuresofdifferentenergysystems,aswelltechnicalchallenges,suchaspreventingcascadingfailures,loweringvulnerability,andimprovingtheresilienceofintegratedenergynetworks(Tayloretal.,2022).

3

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

(forexample,electricvehiclescanpotentiallychargeatanytimeandatanylocationonthenetwork).Inaddition,networkusersarebecomingmoreactiveasdigitalizationandautomationlowerthetransactioncostsofinteractingwiththeelectricitysystem.Theseallhaveimplicationsfortheentireelectricitysystem,includingthenetworkinfrastructure(seeTable1).

Table1:Transformationoftheelectricitysystemanditsimplications

Transformationofthepowersystem

Generation

Variableanduncertainrenewablegeneration

Distributedenergyresources

Energystorage

Electricitydemand

Theriseofelectricityconsumption(e.g.datacentres,

electricvehicles,heatpumps,air-conditioning)

Increaseinuncertaintyofdemand

Networkusers

Activenetworkusers(sumers,energy

communities)

Communicationandcontrol

Digitalizationandautomation

Implicationsforthepowersystem

Initialfocus

Presentfocus

Planning

Renewable

generation

Capacitygrowth

Systeminteraction,integrationcosts

Network

infrastructure

Sufficientcapacitytoaccommodateallusers

Market-basedanddifferentiatedgridaccessregime,competition,costallocation,coordinationwithgeneration

Operation

Reliabilityoperationalsecurity

and

Throughmarket

energy-only

Searchfornewparadigm

Flexibility

Fromconventionalpowerplants

Newsolutions(e.g.DERs,demandresponse,energystorage)andnewincentivesandframeworksforflexibleservices

Source:author

Indeed,adifferentelectricitynetworkisneededcomparedtowhatwehadinthepast.Electricitynetworksrequirehighercapacityandinterconnectionsaswellasmoreefficientapproachestocaterfortheriseintheelectricitydemandandtheincreasedcomplexityandchallengeinasystembalancingsupplyanddemand.

Althoughdecentralizationimpliesthatanincreasinglyhigherproportionofgenerationfacilitiesarelocatedonthedistributionside,significantinvestmentinthetransmissionnetworksisstillrequiredduetothediversegeographicallocationofnewmajorresources,suchasonshoreandoffshorewindfarms,aswellastheincreasedneedforinterconnectivitybetweenelectricitymarkets.

Therearetwoimportantpointswhenitcomestoexpandingthetransmissiongrid.First,thedesignandconstructionofnewtransmissionassetsisacomplexandcostlyprocesswithalongleadtime.Second,thereisstilluncertaintyaboutthetimingandpaceofdecarbonizationofheatingandtransportaswellastheextenttowhichelectrificationcanoutcompetealternativeoptionsinallapplicationsoftheseservices.Thissuggeststhatfuturenetworkinvestmentsneedtoberobustinthefaceofarangeofpossibletransitionpathwayoutcomesforthesetwosectors.

Akeyconcernassociatedwithtraditionalnetworkinvestmentmodelsisrelatedtoeconomicefficiencyandtheirnarrowfocusonasset-basedsolutions,withoutconsideringthefactthatwhilegridexpansioniscrucial,lowercostsandtimelysolutionsmustbeaddressedfirst.Asanexample,consideraregion

4

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

inwhichthereisanexcesssupplyofwindgenerationbutlowdemandduetolowerpopulationdensity,whichresultsinatransmissionconstraint.Thestandardsolutiontothischallengeinthepasthasbeentoaddanewwirethatconnectstheareawherethereisovergenerationtothenearesthighdemandcentre.AsseeninTable2,thedeploymentofanewtransmissionlineisoneoffivepossiblesolutionsforthisproblem.Indeed,thisproblemcanbesolvedbyabattery;anaggregator;avoltageserviceprovider;orasinglelargeindustrialdemand,suchasanelectrolyser,whichcanabsorbtheovergeneration.

Table1:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions

Transmissionconstraintexample:thereisahighlevelofwindpowergenerationinanareawithlowerdemand

Solution1:addingawiretoconnectthehighsupplyareatoanareaofhighdemand

Solution2:deployingabatterythatstoresenergywhensupplyishighandreleasesitbacktothegridwhendemandishigh

Solution3:anaggregatorwhichcanaggregatedemandwiththeabilitytoturnitupordownwhenneededtomatchthesupply

Solution4:avoltageserviceproviderthatcanrespondtotheparticularchallengeofasurgeinelectricitysupplyasresultofasuddenincreaseinwindgeneration

Solution5:asinglelargeindustrialdemand,suchaselectrolysers,whichcanreacttowindpowergenerationsurges

Source:adaptedfromBEIS(2021a)

Theproblemisthatwhennetworkcompaniesarenotincentivizedtoconsiderwidersolutionstogridconstraints,Solution1isalmostalwaysthepreferredchoiceevenifitiseconomicallyinefficient.Thisisbecausenetworkcompanieshaveabiastowardsasset-basedsolutionsasnoneoftheotherapproachesincreasethenetworkcompany’sregulatoryassetbase,thusallowingittoreceiveareturn.Onthecontrary,implementingothersolutionsmayevenresultinlowerrevenueforthenetworkcompanyifthevolumeofenergytransportedinthegriddeclines.

Thisisspecificallythecasewhenthenetworkoperatorandnetworkownerarethesameorganizationandwasoneofthereasonsthat,intheUK,theNationalGridElectricitySystemOperator(NGESO)waslegallyseparatedfromthetransmissionowner,NationalGridElectricityTransmission(NGET),althoughtheybothbelongtothesamegroup—theNationalGrid(NG)Group.Therearenowdiscussionstogoevenfurtherandestablishanindependentenergysystemoperatorwhichhasabsolutelynointerestinregulatedelectricityandgasassets.

Therefore,aligningtheincentiveofthenetworkcompaniesiscriticaltoachieveinvestmentefficiency.Althoughthemarketfornon-networksolutionsatthetransmissionlevelmightnotbewell-developedattheoutset,theintroductionofspecificincentivescanencouragethird-partyproviderstoinnovateandgrow,especiallyasthetechnologyadvances.

Theincreaseintherangeofsolutionsalsoallowsforthepossibilityofutilizingmarketmechanismsandcompetitioninasupplychainsegmentthathastraditionallybeenconsideredasanaturalmonopoly.However,giventhatthetypeofnetworkconstraintaffectstherangeofsolutionsavailabletofixthem,anauctionfortheprocurementofsolutionscanbearrangedindifferentways.Sometimesanetworkconstraintmayhaveaclearuniquesolutionandothertimestheremightbearangeofpossiblesolutions.Thus,thecompetitiontoprocurenetworkservicesneedstoaccountfortheseidiosyncrasiesinthetypeofnetworkconstraintsandassociatedsolutions.IntheUK,withdiscussionsaboutintroducingcompetitioninonshoretransmissionnetworks,theregulatoristryingtodesignacompetitionframeworkthataccommodatesthesecomplexities.‘Earlycompetition’issuggestedincaseswhereagridconstraintisidentifiedbutthetenderhappenspriortothesurvey,consent,anddetaileddesignoftheassetbeingdevelopedsothewholeprocessofdesigning,constructing,anddeliveringthesolutionis

5

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

tenderedfor(BEIS,2021).Thisistoallowforthefactthattheelectricitysystemischangingandmoresolutionsmightbecomeavailablebythetimethetenderhappens.The‘latecompetition’modelisproposedwhenthenetworkproblemisidentifiedandthesolutionisdecidedsothecompetitiontakesplacetobuild,own,andoperatetheagreedsolution.

Despitetheappealofacompetitionforatransmissionnetworkinfrastructure,therearesomeimportantissuesthatneedtobeconsideredforthechoiceofsolutionandtheassociatedauction.First,theleadtimeoftransmissionprojectsishigh,whilethechangeinthegenerationanddemandpatternsisveryuncertaingivencurrentdevelopmentsintheelectricitysector.Thissuggeststhattheneedforactualtransmissioninvestmentcanalterbythetimeaprojectisdelivered.Second,thereisahighlevelofuncertaintyinthecostoftransmissionprojectsandtherearemanyfactors,suchasmeetingplanningrequirements,thatcanaffecttheoutturncostbutcannotbefullyaccountedforatthetimeofdecision.Third,theeffectoftheseproceduresonothercompetitionmechanisms,suchasthoserelatedtosystemservices(runbytheelectricitysystemoperator)orflexibilitytenders(runbythedistributionnetworkoperator),needtobecarefullyexamined.Therefore,introducingcompetitionfortheprocurementofnetworkservicesrequirescarefuldesignandimplementation.

2.1.1Theeffectofmarketdesign

Thediscussionaboutnetworkoperationanddevelopmentcannotbedecoupledfromthedebateonthedesignoftheelectricitymarket.Theriseofvariableanduncertaingeneration,andthefactthattherenewableresourcesareoftenlocatedawayfromtheloadcentre,willchangetheexistingpatternsofflowinelectricitynetworksandthusresultinnewconstraints.Thechallengeisthatlocalcongestion,whetherintransmissionordistribution,isnotreflectedinelectricitymarketpricesinmostplacesaroundtheworldduetothesuboptimaldesignoftheelectricitymarket.Europeanelectricitymarkets,forexample,arestructuredaroundbiddingzones,whichmeansintrazonalcongestioncanbecomeapersistentchallenge.Currently,transmissionsystem’sconstraintsaremanagedbycost-basedormarket-basedregulatedredispatchoftheflexibilityresourcesinthezone.However,thiscanattimesbeverycostly.

Thekeychoicestoaddresstransmissioncongestion,inthecontextoftheEuropeanelectricitymarketdesign,areeithertoexpandthenetworkortoreconfigurebiddingzonessuchthattheyreflecttheactualstructuralcongestion.Networkexpansionisnotalwaysthemostcost-efficientsolution.Furthermore,thereisnoguaranteethatinthefuturenewstructuralcongestionwouldnotariseafterthenetworkhasbeenexpanded.Animprovedzonalmodelwithadequatedemarcationofbiddingzonescanbeacheapersolutionthannetworkreinforcement.However,apartfromthechallengesofimplementingawell-definedbiddingzone,itisalsosusceptibletoso-calledincrease-decrease(inc-dec)gamingopportunities.

Fromamarketdesignperspective,locationalmarginalpricing(LMP),alsocallednodalpricing,istheoptimumapproachtoutilizethegridefficiently.Inthismodel,thepriceateachnodeofthegridrepresentstheactualcostofsupplyingthatparticularnodegiventhenetworkconstraint.Thus,unlikezonalpricing,LMPtakesintoaccountthephysicalcharacteristicsofthegridwhichmeansno‘outofmarket’instrumentsarerequiredtoaddresscongestion,meaningthereisnoneedforredispatchofflexibilityservices.Itisalsolessvulnerableto‘inc-dec’games.Nonetheless,theimplementationofLMPinthecontextoftheEuropeanelectricitymarketisunlikelytobestraightforwardassuchashiftwouldimplymajorchangesformoststakeholdersinthemarket.

2.1.2Electricitydistributionnetworks

Electricitydistributionnetworksareexpectedtobearthebruntoffurtherelectrificationoftransportandheatingservices.Theiroperatingenvironmentisalsofast-changingduetotherapidgrowthofDERsandtheriseofprosumers.Asaresult,thesenetworksneedtooperateunderconditionsofincreasedvariableloadandgenerationaswellasmorefrequentcongestion.Therearethreeregulatory

6

Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews

oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.

instrumentsthatplayacriticalroleinaddressingthechallengesthatdistributionnetworksfaceduringthetransitionera(Gómezetal.,2020).

Thefirstinstrumentisthegridaccessregime.Traditionallygridaccess,forbothconsumersandgenerators,isprovidedonafirmbasis.Thefirmaccessmodelallowsuserstowithdrawand/orinjecttothenetworkuptothemaximumcapacity2oftheinstalledfuseatanytimeorlocation.Despiteitssimplicitygivenlackofneedforreal-timemanagementofinjectionsandwithdrawalbythegridoperator,firmaccessisaninefficientapproach.Thisisbecause,underthisregime,alargepartofthenetworkcapacityisidleasnetworkcomponentsareoftenusedattheirratedvalueonlyforverylimitedtimesoftheyear.Firmaccessalsopreventsnewusersfrombeingconnectedwheneveryuserisgivenagridaccessoptionattheirmaximumratedcapacity.

Anon-firmoraflexibleaccessregime,ontheotherhand,isbetteralignedwiththerequirementforfastandefficientgridconnectioninanelectricitysystemwhichisexperiencingrapidgrowthofrenewableanddistributedenergyresources.Aflexibleconnectionprovidesthenetworkoperatorwiththerighttomanagetheuserfeed-inorconsumptioninexchangeforincentivessuchasdirectrenumeration,arebateongridconnectioncosts,fasterconnection,orsimplytherighttoconnectratherthanrefuseacustomer’sconnectionapplication.Inthisway,theneedforfurthernetworkreinforcementdeclinesandmoreuserscanbeac

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论