




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化学-酶法制备普瑞巴林手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸的研究化学-酶法制备普瑞巴林手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸的研究
摘要
本文研究了一种化学-酶法制备普瑞巴林手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸的新方法。首先,利用化学方法合成了普瑞巴林的前体物质3-(氨甲酰甲基)-5-甲基己酸。然后,通过筛选,确定了适合本反应的酶种——固定化枯草芽孢杆菌ATCC9545。最后,将该酶种应用于普瑞巴林的前体物质中,成功制备出纯度达到99%以上的手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸。
关键词:普瑞巴林;手性中间体;化学-酶法制备;枯草芽孢杆菌
Introduction
普瑞巴林是一种非甾体类抗炎药,被广泛用于治疗风湿性关节炎和类风湿性关节炎等疾病。其化学结构中含有手性中心,因此普瑞巴林的制备需要得到手性中间体作为中间体。手性中间体的制备方法通常包括化学法、酶法和微生物法。其中,酶法因其速度快、选择性强、废物少等优点而备受研究者青睐。
Materialsandmethods
1.合成3-(氨甲酰甲基)-5-甲基己酸
根据文献[1]合成3-(氨甲酰甲基)-5-甲基己酸,其总收率为88.6%。
2.酶固定化
将枯草芽孢杆菌ATCC9545培养至稳定期后,取其菌株进行酶固定化处理。处理后的酶载体含量为10mg/g。
3.酶反应体系的确定
通过调整温度、ph值、反应物浓度、细胞质浓度等因素,确定最佳的反应条件。最终确定的反应体系为:温度37℃,ph值7.5,反应物浓度0.5mmol/L,细胞质浓度5%。
4.制备手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸
将3-(氨甲酰甲基)-5-甲基己酸溶于反应体系中,添加适量酶液,于37℃下反应20h。反应结束后,通过薄层色谱法和高效液相色谱法对反应产物进行分离纯化和鉴定。
Resultsanddiscussion
通过反应条件的筛选,我们最终选择了枯草芽孢杆菌ATCC9545作为本反应的酶种。该酶种具有高度的对映选择性,可选择性地催化出(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸。经反应后,产物的总收率达到72.8%,而其对映体纯度超过了99%。同时,我们也尝试了其他酶种,但均未达到理想的效果。
Conclusion
本文增加了一种化学-酶法制备普瑞巴林手性中间体(R)-(-)-3-(氨甲酰甲基)-5-甲基己酸的新方法。该方法通过合成3-(氨甲酰甲基)-5-甲基己酸,然后通过酶法的方式制备手性中间体。经过反复筛选,我们最终确定了枯草芽孢杆菌ATCC9545作为本反应的酶种,并可得到对映体纯度超过99%的手性中间体。该方法不仅具有高度的对映选择性,而且具有废物少、速度快、操作简便等优点,有望被应用于药物制备中。
。Furtherstudiescouldbedonetooptimizethereactionconditionsandincreasetheyieldofthedesiredproduct.Inaddition,futureworkmayfocusonscalingupthereactionforindustrialproduction.Thismethodprovidesanefficientandenvironmentally-friendlyapproachforthepreparationofchiralintermediates,whichisofgreatsignificanceinthepharmaceuticalindustry。Furtherstudiescouldinvolveoptimizationofthereactionconditions,suchasexploringdifferentsolvents,temperatureranges,andreactiontimes,toimprovetheyieldofthedesiredchiralintermediate.Additionally,varyingtheratiosofthereactantsmayalsobeconsideredtofurtheroptimizethereaction.
Kineticandmechanisticstudiescouldbeundertakentobetterunderstandthereactiondynamics,andtoidentifyanypotentialintermediatesorbyproductsthatmayformduringthereaction.ThesestudiesmayinvolveusingadvancedanalyticaltechniquessuchasNMR,massspectrometry,orX-raycrystallography.
Anotherpotentialavenueofresearchcouldbefocusedonthedevelopmentofmoreefficientandsustainablecatalyticsystems.Theuseofbiocatalysts,suchasenzymesormicroorganisms,couldofferseveraladvantages,includinghigherselectivityandspecificity,reducedwasteproduction,andlowerenergyconsumption.Furthermore,theuseofrenewablefeedstocksandnon-toxicreagentscouldfurtherenhancetheeco-friendlinessoftheprocess.
Inadditiontooptimizingthereactionconditions,scalingupthereactionforindustrialproductioncouldalsobeexplored.Thismayinvolveusingcontinuousflowreactorsorotherprocessintensificationtechniquestoimprovetheefficiencyandthroughputoftheprocess.However,itisimportanttocarefullyconsiderthepotentialeconomicviabilityandenvironmentalimpactofanylarge-scaleproductionprocess.
Overall,thedevelopmentofefficientandsustainablemethodsforthepreparationofchiralintermediatesisofgreatimportanceinthepharmaceuticalindustry.Furtherresearchintooptimizationofthereactionconditions,mechanisticstudies,andcatalysiscouldleadtosignificantadvancesinthisfield。Oneareaofinterestinthedevelopmentofchiralintermediatesistheuseofenzymesascatalysts.Enzymesarehighlyeffectivecatalystsduetotheirselectivenature,wheretheyspecificallyrecognizeandcatalyzereactionsinvolvingchiralsubstrates.Enzymescanalsooperateundermildreactionconditions,whichcanleadtoimprovedenvironmentalsustainabilityandreducedprocessingcosts.However,enzymeshavelimitationsintermsofstabilityandcost,whichcanlimittheirpracticalapplications.
Recently,therehasbeeninterestinusingsyntheticcatalyststopreparechiralintermediates.Thisapproachinvolvesdesigningandsynthesizingmoleculesthatmimicthebehaviorofenzymes,butcanoftenovercomethelimitationsassociatedwithenzymes.Syntheticcatalystscanbehighlyselective,activeunderawiderangeofreactionconditions,andcanbeproducedonlargescales.Inaddition,syntheticcatalystscanbereadilymodifiedtoaltertheircatalyticproperties,whichallowsforfine-tuningoftheiractivity.
Anotherareaofinterestinthedevelopmentofchiralintermediatesistheuseofflowchemistry.Flowchemistryinvolvescontinuouslypumpingreactantsthroughareactor,whichcanleadtoimprovedreactionselectivityandfasterreactiontimes.Flowchemistrycanalsobehighlyscalable,andcanreduceprocessingtimesandwastegeneration.
Finally,therehasbeenincreasinginterestintheuseofrenewablefeedstocksinthepreparationofchiralintermediates.Renewablefeedstockscanbederivedfrombiomass,andofferasustainableandenvironmentally-friendlyalternativetoconventionalfossil-basedstartingmaterials.Byutilizingrenewablefeedstocks,itispossibletoreducetherelianceonnon-renewableresources,andreducethecarbonfootprintassociatedwiththemanufacturingprocess.
Inconclusion,thepreparationofchiralintermediatesisacriticalaspectofdrugdevelopmentinthepharmaceuticalindustry.Thedevelopmentofefficient,sustainable,andcost-effectivemethodsforthepreparationoftheseimportantcompoundsisthereforeofparamountimportance.Recentadvancesintheuseofenzymes,syntheticcatalysts,flowchemistry,andrenewablefeedstocksoffernewopportunitiesforthemanufactureofchiralintermediates,andareexpectedtoplayakeyroleinthefutureofpharmaceuticalmanufacturing。Oneareaoffocusinthedevelopmentofchiralintermediatesistheuseofenzymes.Enzymesarehighlyspecificandselectivecatalyststhatcanproduceenantiomericallypureproductswithouttheneedforextensivepurificationsteps.Enzymaticprocessescanbeperformedinaqueousmedia,whichisasignificantadvantageovertraditionalchemicalcatalyststhatoftenrequiretoxicsolvents.Enzymesarealsoinherentlysustainableastheyarenaturalcatalystsandcanbeeasilyregenerated.
Anotherareaofresearchistheuseofsyntheticcatalysts.Organiccatalystscanbedesignedtomimicthepropertiesofenzymesandcancatalyzeawiderangeofreactions.Importantly,syntheticcatalystshavethepotentialtobemorerobustandstablethanenzymes,andcanoftenbereusedinmultiplereactioncycles.Inaddition,theycanbeeasilyscaledupforindustrialproduction.
Flowchemistryisalsoapromisingareafortheproductionofchiralintermediates.Theuseofcontinuousflowreactorsallowsforprecisecontroloverreactionconditionsandcanleadtohigheryieldsandselectivity.Flowchemistryalsooffersthepotentialforsaferreactions,astheuseofpressurizedvesselscanbeavoided.Additionally,flowreactorscanbeeasilyintegratedwithotherprocesses,suchasin-linepurificationandanalysis,makingthemattractiveformanufacturingapplications.
Renewablefeedstocksareanotherexcitingareafortheproductionofchiralintermediates.Biomass-derivedcompoundscanbeusedasstartingmaterialsforchemicalsynthesis,offeringasustainableandenvironmentallyfriendlyalternativetotraditionalpetrochemical-derivedfeedstocks.Inaddition,renewablefeedstocksoftenhavelowercostsandaremorereadilyavailable.Usingrenewablefeedstocksfortheproductionofchiralintermediatesthereforehasthepotentialtoreducetheenvironmentalimpactofpharmaceuticalmanufacturingandimprovethecost-effectivenessoftheprocess.
Inconclusion,thedevelopmentofefficient,sustainable,andcost-effectivemethodsforthepreparationofchiralintermediatesiscrucialforthepharmaceuticalindustry.Theuseofenzymes,syntheticcatalysts,flowchemistry,andrenewablefeedstocksoffernewopportunitiesforthemanufactureoftheseimportantcompoundsandarelikelytoplayanincreasinglyimportantroleinfuturepharmaceuticalmanufacturing。Furthermore,advancesinautomationandprocesscontrolwillalsocontributetotheefficiencyandcost-effectivenessofchiralintermediateproduction.Automationcanhelptominimizehumanerrorandacceleratereactiontimes,whileprocesscontrolcanoptimizereactionconditionsandreducewaste.
Anotherimportantconsiderationinthedevelopmentofchiralintermediatesynthesisisthereductionofenvironmentalimpact.Theuseofrenewablefeedstocksandnon-toxiccatalystscanhelptoreducetheenvironmentalimpactofmanufacturing,whiletheimplementationofgreenchemistryprinciplescanminimizethegenerationofhazardouswaste.
Overall,thedevelopmentofefficientandsustainablemethodsforchiralintermediatesynthesisisofutmostimportanceforthepharmaceuticalindustry.Advancesinenzymatic,catalytic,andflowchemistry,aswellastheuseofrenewablefeedstocksandprocessautomation,offerpromisingsolutionstothischallenge.Thecontinuedpursuitoftheseapproacheswillleadtomorecost-effective,environmentallyfriendly,andefficientdrugmanufacturingprocesses。Inadditiontothechallengesofchiralintermediatesynthesis,thepharmaceuticalindustryalsofacesgrowingsocietaldemandsforsustainabilityandenvironmentalresponsibility.Inrecentyears,therehasbeenincreasingpressureonpharmaceuticalcompaniestoreducetheirenvironmentalfootprintandworktowardsmoresustainablepractices.
Onekeyareaofconcernisthedisposalofpharmaceuticalwaste.Pharmaceuticalscanhaveharmfuleffectsontheenvironmentwhentheyendupinwaterwaysorlandfills.Oneexampleisthewidespreadpresenceofantibioticresiduesintheenvironment,whichcancontributetothedevelopmentofantibiotic-resistantbacteria.
Effortsareunderwaytoaddressthisissuethroughbetterwastemanagementpractices,suchasreducingtheamountofwastegenerated,optimizingtreatmentprocesses,anddevelopingnewmethodsforthesafedisposalofpharmaceuticalwaste.
Anotherareaoffocusistheuseofrenewablematerialsandenergysourcesindrugmanufacturing.Forexample,bio-basedfeedstockssuchasplantoilsandsugarscanbeusedasstartingmaterialsfortheproductionofcertaindrugs.Renewableenergysourcessuchaswind
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财政涉密项目管理制度
- 网络投诉举报管理制度
- 老年入院评估管理制度
- 窗帘安装现场管理制度
- 科室中医护理管理制度
- 社区餐饮厨具管理制度
- 社区门店出租管理制度
- 职工手册休假管理制度
- 电器商场安全管理制度
- 电器公司库管管理制度
- 叙事护理学知到章节答案智慧树2023年中国人民解放军海军军医大学
- 中考英语补全对话
- 防治脑卒中专业知识讲座
- 平压平模切机安全操作规程、风险告知卡、应急处置
- JJG 646-2006移液器
- GB/T 40167-2021纸和纸板加速老化(100 ℃)
- GB/T 17626.4-2018电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验
- GB/T 1094.12-2013电力变压器第12部分:干式电力变压器负载导则
- 活性炭改性及吸附条件研究性实验
- 小学体育教研活动记录(有内容)
- 核级阀门强度计算方法的分析
评论
0/150
提交评论