全球6G技术大会白皮书 2023 -Preliminary Study of Advanced Technologies towards 6G Era - QITs 2023_第1页
全球6G技术大会白皮书 2023 -Preliminary Study of Advanced Technologies towards 6G Era - QITs 2023_第2页
全球6G技术大会白皮书 2023 -Preliminary Study of Advanced Technologies towards 6G Era - QITs 2023_第3页
全球6G技术大会白皮书 2023 -Preliminary Study of Advanced Technologies towards 6G Era - QITs 2023_第4页
全球6G技术大会白皮书 2023 -Preliminary Study of Advanced Technologies towards 6G Era - QITs 2023_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023ExecutiveSummaryOverthepastyear,thelatestdevelopmentsinthe6thgeneration(6G)communicationsystemsresearchhavebeenreportedallovertheworld.6Gisemergingasanimportantdirectionforresearchanddevelopmentinthefieldofcommunications.Asoneenablingtechnologyfor6G,quantuminformationtechnologies(QITs)continuetoattractinterestfromacademiaandindustryduetotheexpectedinformationprocessingcapabilitiesbeyondtheirclassicalcounterparts.Inthe6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Chapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplyingquantummechanisms.Theintroductionstartswithkeytechnologiesincludingquantumkeydistribution(QKD)andquantumrandomnumbergenerator(QRNG),followedbystate-of-the-artstandardizationactivitiesforquantumkeydistributionnetworks(QKDN)allovertheworld.Regardingtheimplicationsfor6G,ChinaUnicomhasbuiltaquantumkeycloudplatforminXiong’anNewAreaandcarriedoutawiderangeofquantumencryptiontechnologyresearchandapplicationdemonstrations.Thus,twooftherepresentativeapplicationscenarios,namely,quantumencryptedcallandquantumpublicnetworkclusterintercomwillalsobeintroducedinthischapter.Tosatisfythedramaticallyincreasedcommunicationsystemperformanceandrichdiversityofinnovativeservicesexpectedby6G,theemergingquantummachinelearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismsandmachinelearning.Consideringquantum-enhancedreinforcementlearninghasthepotentialtorevolutionizethefieldofartificialintelligence(AI),chapter3getsinsightintotheresearchofquantum-enhancedmachinelearningbyanalyzingrepresentativeworksindetailfromtwoaspects.Oneistostudyhowtospeedupthereinforcementlearning(RL)byapplyingthequantummechanism.Theothershowsanexperimentperformedtoreconstructanunknownphotonicquantumstatewithalimitedamountofcopies,forwhichtheperformanceintermsoffidelitiescanbeimprovedwiththeassistanceofthesemi-quantumreinforcementlearningapproach.前言过去一年中,有关第六代通信系统(6G)研究的最新进展在全球范围内被广泛报道。6G正逐渐成为通信领域的重要研发方向。作为6G的使能技术之一,量子信息技术(QITs)因其超越经典信息技术的信息处理能力预期,在学术界和工业界开始受到青睐。在6G时代,网络安全在移动通信中的重要性预计将呈指数级增长。本白皮书在第2章重点介绍旨在通过应用量子机制保护关键信息的量子安全通信。该章节首先介绍了量子密钥分发(QKD)和量子随机数生成器QRNG等关键技术,接着全面回顾了全球量子密钥分发网络(QKDN)的最新标准化活动。关于量子信息技术的6G应用,中国联通在雄安新区建设量子密钥云平台,并开展了广泛的量子加密技术研究和应用示范。本章也将分享了其中两个具有代表性的应用场景,即,量子加密通话和量子公网集群对讲。为满足6G所期望的大幅提高的通信系统性能和丰富多样的创新服务,新兴的量子机器学习(QML)因其信息处理范式融合了量子机制和机器学习的技术优势而备受关注。考虑到量子增强强化学习具有彻底改变人工AI其一研究如何通过应用量子方法来加速强化学习(RL)。其二展示了用有限数量的副本重建未知光子量子态的实验,在半量子强化学习方法的帮助下,可以提高保真度方面的性能。ExecutiveSummary01前言021Introduction042QuantumSecureCommunication052.1KeyTechnologies 052.1.1OverallPicture 052.1.2QuantumKeyDistribution 052.1.3QuantumRandomNumberGenerator 072.2StandardizationActivitiesforQKDN 092.2.1ITU-T 0ITU-TStudyGroup13 ITU-TStudyGroup17 ITU-TStudyGroup11 ITU-TFG-QIT4N 132.2.2ETSIISG-QKD 142.2.3ISO/IECJTC1/SC27 162.3Implicationsfor6G 162.3.1ApplicationScenario1:Quantumencryptedcall 172.3.2ApplicationScenario2:Quantumpublicnetworkclusterintercom 183QuantumMachineLearning(QML)193.1Quantum-EnhancedReinforcementLearning 193.2ReconstructionofaPhotonicQubitStatewithReinforcementLearning 21Reference24Acknowledgement25Ts1.IntroductiontintroducetwobenefitsexpectedfromQITstocommunicationandcomputingsystems,i.e.,quantumChapter2focusesonquantumsecurecommunicationaimingatsafeguardingcriticalinformationbyapplyingquantummechanisms.Chapter2startswithkeytechnologiesincludingquantumkeydistribution(QKD)andquantumrandomnumbergenerator(QRNG),followedbystate-of-the-arttheimplicationsfor6G,twonovelapplicationscenariosareintroduced,namely,quantumencryptedLTosatisfythedramaticallyincreasedcommunicationsystemperformanceandrichdiversityofinnovativeservicesexpectedby6G,theemergingQMLhasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismsandmachinelearning.Consideringquantum-enhancedreinforcementlearninghasthepotentialtontumenhancedmachinelearningbyanalyzingrepresentativeworksindetailfromtwoaspects.OneistoexperimentperformedtoreconstructanunknownphotonicquantumstatewithalimitedamountofTs2.QuantumSecureCommunication22.1KeyTechnologies2.1.1OverallPictureQuantumcommunicationisanewandrapidlydevelopingcommunicationtechnologythathasbecomeahottopicinfrontierscienceandtechnology,thesecurityofwhichisguaranteedbyquantummechanics.Quantumkeydistribution(QKD)isthemostmaturelydevelopedquantumcommunicationtechnology,usingquantumsuperpositionstatesorentanglementtodistributequbits,withunconditionalsecurityatthetheoreticallevel.TheQuantumRandomNumberGenerator(QRNG)isknowntothegeneralpublicasarelativelymatureproductwiththehelpofQKD.QRNGisasystemforgeneratingtruerandomnumbersbasedontheprinciplesofquantumphysicsorquantumeffectsandhasimportantapplicationsinareassuchaspracticalquantumcommunicationsystems.2.1.2QuantumKeyDistributionTodate,therearemanydifferentprotocolsforQKD,allofthemcanbedividedintotwomaincategories:prepare-and-measure(PM)protocol,entanglement-based(EB)protocol.Fortheformer,thetransmittergeneratesarandombitsequenceandthenencodesthemonquantumstates,whicharesubsequentlysenttoreceivertomeasure.Forthelatter,onepartypreparesenoughentangledstatesfordistributingoverthechanneltotheotherparty,andthenpurifiesandmeasurestheentangledstatestoobtainthesecurekeys.BecausethePMschemeiseasiertoimplement,itisoftenusedtostructurepracticalsystems,inwhichthe"PreparedbybothpartiesandMeasuredbycenter"schemeismostlyadopted.Inaddition,itcanbefurtherdividedintotwotypes:DV-QKDandCV-QKD.ThesuccessfuldemonstrationoftheBB84QKDin1989provedthetheoreticalunconditionalsecurityofQKD.AlthoughQKDistheoreticallyunconditionallysecure,imperfectionsinthepracticaldevicescanexposethesystemtothreats.Therefore,Decoy-stateprotocolandMeasurement-device-independent(MDI)QKDareshowninTable2-1,whichaddressthevulnerabilitiesofweaklycoherentsourcesanddetectordevicesrespectively,enabletheunconditionalsecurityofQKDtobeguaranteedinthenon-perfectdevicecase.ThisisamajorTsadvanceintheprotocolizationofQKD.Twin-Field(TF)QKDprotocol,forthefirsttime,breaksthePLOBboundwithoutaquantumrepeater,becomingawidelyrecognizedtechnicalsolutionforultra-long-rangeQKD.Withanewtransmissiondistanceof833kmin2022[2-1],TF-QKDisastepclosertobringingthe1,000kmquantumcommunication.Table21ThestagesofdevelopmentoftheQDKprotocolComparedwithDV-QKD,CV-QKDhasthecapabilityofMbit/shigh-speedkeyformationatshortandmediumtransmissiondistances,whichissuitableforhigh-speedmetropolitanareanetworkapplications.ThedevelopmentoftheCV-QKDsystemarchitectureisdividedintothreestages,withtherandomlocaloscillation(RLO),locallocaloscillation(LLO)anddiscretemodulateddigitalsystem,amongwhichthediscretemodulateddigitalsystemisexpectedtobecomethemainstreamcommercialsolutionforCV-QKDinthefuture.In2022,theLLO-CV-QKDsystemdemonstratedinthemetropolitanareawasreportedwithasecurekeyrateof21.53Mbit/sat25kmdistance[2-2],realizingLLO-CV-QKDwithultra-highsecurekeyrateandlayingasolidfoundationforCV-QKDwithevenhighersecurekeyrate.InthevariousQKDprotocolsmentionedabove,noneofthedevicesecurityriskshavebeencompletelyavoided,althoughMDI-QKDhasaddressedtheflawofattacker-controlledprobes.Theidealsolutionwouldbetoapplyanentanglement-basedDI-QKDsystemthatdealswiththesecurityvulnerabilitiesthatallowanattackertocontrolalldevicesandcanreachanupperlimitofinformation-theoreticsecurityatthephysicallevel.In2022,theBritish,GermanandChineseresearchteams,simultaneouslyreportedthreeexperimentaladvancesinDI-QKDproof-of-principle,enabling3.32bit/sinaDI-QKDsystembasedontheE91protocol[2-3],apredictiveentanglement-basedDD-QKDwithaBERof0.078[2-4],anda200mfiberDI-QKDbasedonpolarizationentangledphotons[2-5].Itisimportanttonotethatthesetechniquesaretheoreticallyvalidatedandarecurrentlydifficulttoindustrializeduetotheverystrongcapabilitiesofthehypotheticalattacker.TsThesatellitetransmissionQKDsystemisalsoamajordevelopmenttechnologyforquantumcommunication,anditsmaingoalistoconductsatellite-groundhigh-speedQKDexperimentswiththehelpofasatelliteplatform,andtoproceedwithwide-areaquantumkeynetworkexperiments.SatelliteQKDnetworkshaveuniqueadvantages.Ontheonehand,comparedwithopticalfibertransmissionQKD,satellitetransmissionQKDhaslowerlossandcansignificantlyincreasethetransmissiondistance.Ontheotherhand,satellitescanbeusedasrepeaters,whichcaneffectivelyimprovetheapplicationscopeandsecurityofQKD.Inrecentyears,countrieshaveattachedgreatimportancetothedevelopmentofsatelliteQKDandhavecarriedoutaseriesofexperimentsonsatellitequantumnetworks.In2022,China'sMozisatellitehasreachedthecurrentfarthestQKDof1200km[2-6]andlaunchedtheworld'sfirstQKDmicro-nano-satellite"Jinan-1"[2-7].AsQKDisonthecommercializationtrack,integratedphotonicsprovidesapowerful,miniaturizedandcost-effectiveplatformtoimplementQKDtransmitterandreceiverdevices.ThedesignofintegratedQKDsystemsrequirestheselectionofdifferentopticaldesignsaswellasmaterialplatformsdependingontherequirementsoftheapplication.Silicon-basedplatformsofferprovenprocessingplatformsbutrequiretheuseofhybridintegratedlasersources;InPplatformsallowmonolithicintegrationoflasersandhigh-speedphasemodulators,butdevicesizeaswellascostaspectsstillneedtobeimproved.Futuredevelopmentsinfull-chipQKDtendtousenotjustoneofthesematerials,butacombinationofseveralmaterialstodesigndevicessuitableforthesystem,therebyreplacingalargenumberofhigh-performancediscretedevices,reducingdevicecostandsize,improvingsystemintegration,andfurtherpromotingthelarge-scalecommercializationofquantumcommunicationsystems.2.1.3QuantumRandomNumberGeneratorQuantumRandomNumberGenerator(QRNG)isasystemthatgeneratestruerandomnumbersbasedontheprinciplesofquantumphysicswiththecharacteristicsofunpredictability,irreducibility,andunbiasedness,whichisavitaldeviceinquantumcommunicationsystemsandcanbeappliedinQKDsystems.IntheQRNGsystem,thecorrespondingquantumstateneedstobepreparedfirst.Afterward,thequantumstateismeasuredandtherawdataisobtained.ThequantumrandomnessTscontainedintherawdatacanbequantifiedbymodelingaswellasbycalculation.Basedontheresultsofthequantizationanalysis,therawdataarepost-processedtoobtainthefinaltruerandomnumber.QRNGsaredividedintotwomaincategories:discreteandcontinuous,dependingontherandomsourceused.ThediscreteQRNGmainlyusessignalssuchassinglephotonsourcesandentangledphotonpairsascarriersofrandomvariables.Theschemeissimpleinprincipleandhasobviousquantumuncertainty,buttherandomnumbergenerationrateofthisschemeislow,whichismainlylimitedbythelinewidthoftherandomsourceandthedetectionefficiencyofthesingle-photondetector.ThecontinuousQRNGusesthetruerandomnessofthespontaneousradiationphotonphasetoconverttherandomfluctuationphaseintolightintensity,whichisthencapturedandquantizedbyahigh-speedanalog-to-digitalconvertertoobtaintherawquantumrandomnumber.Thisschemeisnotrestrictedbythesaturationcountrateofsingle-photondetectorsandsubstantiallyincreasesthegenerationrateofrawrandomnumbers.Currently,thedevelopmentdirectionofQRNGtechnologyisfocusedonincreasingthegenerationrateofquantumrandomnumbers,miniaturizationofquantumrandomnumbergeneratingdevices,andreducingthecostofquantumrandomnumbergenerators.TherandomnumbergenerationrateisthemostimportantmetricforQRNG.In2022,GhentUniversity,togetherwiththeTechnicalUniversityofDenmarkandthePolitecnicodiBariinItaly,experimentallydemonstratedanultra-fastgenerationrateof100Gbit/s[2-8],raisingthenewrecordforvacuumquantumrandomnumbergenerationbyanorderofmagnitude.Besides,QRNGchipswithstableperformance,lowcost,andhighvolumeproductionhavebecomeanurgentrequirementforcryptographicsystems.Manycompaniesandresearchinstitutesareconductingminiaturizationandchip-basedresearch,andavarietyoftechnologysolutionsanddeviceformsarebecomingcommerciallyavailableforQRNGproducts,withthehighestrandomnumbergenerationratesincreasingto10Gbit/s.Korea'sSKTandSamsunglaunchedGalaxyQuantum3smartphonetopromotechip-basedQRNGinmobileterminalauthenticationandinformationencryptionapplications.Inthefuture,QRNGisexpectedtoentertheconsumermarketrapidlyastheQRNGchip-basedtechnologymaturesandcost-effectivenessisrealized.Ts2.22.2StandardizationActivitiesforQKDNQKDanditsnetworkingtechnologieshaveattractedalotofinterestinmultipleSDOs,e.g.,ISO,IEC,ITU,IEEE,IETF,ETSI,asshowninFigure2-1.ThestatusofQuantumKeyDistributionNetworks(QKDN)standardizationindifferentSDOswillbebrieflyreviewedinthefollowingsub-clauses.Figure21QKDNstandardizationtimeline2.2.1ITU-TITU-TwasthefirstSDOtostandardizeQKDasanetwork.InJuly2018,ITU-TSG13initiatedthefirstworkitem(i.e.,Y.3800)onQKDandbroughtintheconceptofQuantumKeyDistributionNetwork(QKDN)firstly.Afterwards,therearemorethan40workitemsconductedby4differentgroupsinITU-TundertheumbrellaofQKDN,whichcanbedividedinto4branchesasfollows:■■■■etworkaspectsofQKDNStudyGroupQformerlyQ4/17):focusonsecurityaspectofQKDNStudyGroupQfocusonQKDNhighlayerprotocolsandsignalingFocusGrouponQuantuminformationtechnologyforNetworks(FG-QIT4N):tostudytheimplicationsofQITsforbothquantumandICTnetworkTsITU-TStudyGroup13AlandscapediagramfortheQKDNstandardizationworkinSG13isasillustratedinFigure2-2.SG13hasthefollowingworkitemsonQKDNaslistedinTable2-2.Figure22:QKDNstandardizationlandscapeinITU-TSG13Table21ThestagesofdevelopmentoftheQDKprotocolTsITU-TStudyGroup17AlandscapediagramfortheQKDNstandardizationworkinSG17isillustratedinFigure2-3.SG17hasthefollowingworkitemsonQKDNaslistedinTable2-3.TsFigure23:QKDNstandardizationworkitemsinSG17Table23QKDNrelatedworkitemsinITU-TSG17TsITU-TStudyGroup11AlandscapediagramfortheQKDNstandardizationworkinSG11isillustratedinFigure2-4.SG11hasthefollowingworkitemsonQKDNprotocols,aslistedinTable2-4.Figure24:QKDNstandardizationworkitemsinSG11Table24QKDNrelatedworkitemsinITU-TSGITU-TFG-QIT4NthefollowingworkitemsonQKDNaslistedinTableTable24QKDNrelatedworkitemsinITU-TSG11Ts2.2.2ETSIISG-QKDETSIinitiatedtheindustryspecificationgroup(ISG)onQKDin2008.ETSIISG-QKDhaspublishedninespecificationsonQKDuntil2019andhaveseveralworkitemsongoingaslistedinTable2-6.ThepreviousworkmainlyfocusedonQKDlink-levelissues,includingQKDopticalcomponents,modules,internalandapplicationinterfaces,practicalsecurity,etc.NotethatETSIhasalsoinitiatedthestudyofQKDnetworkarchitecturesrecentlyandthespecificationofQKDsecuritycertificationbasedoncommoncriteria.Table26:QKDrelatedworkitemsinETSITsTs2.2.3ISO/IECJTC1/SC27ISO/IECJTC1/SC27initiatedthestudyperiod"Securityrequirements,testandevaluationmethodsforquantumkeydistribution"in2017.In2019,thestudyperiodwascompleted,andanewworkitemISO/IEC23837(Part1&2)wasestablishedaslistedinTable2-7.Table27:QKDrelatedworksitemsinISO/IECJTC12.32.3Implicationsfor6GTheQuantumkeycloudplatformobtainsquantumkeysfromQKDorQRNG,andstoresandmanagesthekeysafely.Throughthesecuritymechanism,thequantumkeyscanbedistributedtotheusersecurityterminalandprovidehigh-levelsecurityprotectiontotheusersecurityterminaleveninthefaceofchallengesofquantumcomputing.TheQuantumkeycloudplatformcanprovidequantumencryptionservicesforthegovernment,enterprises,andindividualstoprotectthestorageandtransmissionofdatasafely.Atpresent,ChinaUnicomhasbuiltaQuantumkeycloudplatforminXiong’anNewAreaandcarriedoutquantumencryptiontechnologyresearchandapplicationdemonstration,suchasquantumencryptedcall,quantumpublicnetworkclusterintercom,quantumvideoconference,andquantumUAVpatrol.Thefollowingdescribestwooftherepresentativeapplicationscenarios,namely,quantumencryptedcallandquantumpublicnetworkclusterintercom.Ts 2.3.1ApplicationScenario1:QuantumencryptedcallFigure25SystemdiagramofQuantumencryptedcallIntheapplicationscenarioofquantumencryptedcall,thesecurityterminalusesthepre-chargedquantumkeysas“theidentityauthenticationkeys”and“thebasicencryptionkeys”.Whenmakingacallorsendingamessage,theQuantumkeycloudplatformselectsasetofquantumkeysas“thesessionkeys”,andencryptsthemwith“thebasicencryptionkeys”andsendsthemtothesecurityterminal.Thesecurityterminaldecrypts“thesessionkeys”with“thebasicencryptionkeys”,andthen“thesessionkeys”canbeusedtoprotectthevoiceanddatastreamofthesecurityterminal.Inaddition,wehavedevelopedaspecialApp,throughwhichthequantumsecurityterminalcanrealizeencryptedtransmissionoftext,voice,pictures,files,andothercontents.AndtheAppsupportsthefunctionof"burnafterreading".Ts 2.3.2ApplicationScenario2:QuantumpublicnetworkclusterintercomFigure26SystemdiagramofQuantumpublicnetworkclusterintercomIntheapplicationscenarioofquantumpublicnetworkclusterintercom,theterminalandtheCommandanddispatchingplatformintegratethequantumSDK,whichcanobtainthequantumkeysfromtheQuantumkeycloudplatformandperformquantumencryptiontoensurethesecurityoftheclustervoice,video,imageandotherservicedataandoperationalsignalingwhentransmittedoverthepublicnetwork.IftheeavesdropperusesterminalsCandDwithoutintegratingquantumencryptionfunctiontoillegallyentertheclusterintercomsystemofterminalsAandB,whichintegratingquantumencryptionfunction,whenterminalsAandBsendvoiceandvideomessages,terminalsCandDcannotcrackthereceivedquantumencryptedinformation,thatis,theycannotreceivevoiceorvideoinformationnormally.However,terminalsAandBcanreceivethemessagesnormally,whichweresentbyterminalsCandD.Ts3.QuantumMachineLearning(QML)Itishighlyexpectedthatthe6thgeneration(6G)communicationsystemswilllayafoundationofpervasivedigitization,ubiquitousconnectionandfullintelligence.Tosatisfythedramaticallyincreasedcommunicationsystemperformanceandrichdiversityofinnovativeservices,QuantumMachineLearning(QML)isemergedduetoitsinformationprocessingcapabilitybeyonditsclassicalcounterpart,whichisachievedbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthewhitepaperofversion2021,weintroducedtheconceptsandbasicparadigmsofQMLonahighlevel.Whereinquantum-enhancedmachinedlearningcanbefurthercategorizedaccordingtothethreebranchesofML(i.e.,supervisedlearning,unsupervisedlearning,andreinforcementlearning).Inparticular,quantum-enhancedreinforcementlearninghasapotentialtorevolutionizethefieldofartificialintelligence(AI).Inthisfollowing,wewillgetinsightintotheresearchofquantum-enhancedmachinelearningbyanalyzingtworepresentativeworksindetail.Thefirstworkin[3-1]gainsspeed-upofreinforcementlearningbyprobingtheenvironmentinsuperpositionsandprovidesageneralmethodofquantumimprovementsinthethreeparadigmsofmachinelearning.Thesecondworkin[3-2]showsanexperimentperformedtoreconstructanunknownphotonicquantumstatewithalimitedamountofcopies,forwhichtheperformanceintermsoffidelitiescanbeimprovedwhenassistedbysemi-quantumreinforcementlearningapproach.33.1Quantum-EnhancedReinforcementLearningReinforcementLearning(RL)[3-3]isanareaofmachinelearningconcernedwithhowintelligentagentsreactinanenvironmentwithatargetofmaximizingthereward.ThefocusofRLisonfindingabalancebetweenexploration(ofunchartedterritory)andexploitation(ofcurrentknowledge)[3-4].Ascomparedtosupervisedlearning,labeledtrainingdataisnotrequiredforreinforcementlearning.However,partiallysupervisedRLalgorithmscancombinetheadvantagesofsupervisedandRLalgorithms.OnepowerfulfeatureofRLissuitablefordealingwithlargeenvironments.Reinforcementlearningistypicallyusedforsolvingcontrolandclassificationproblems.ConventionalandnotableRLalgorithmssuchasQ-learningandmulti-armedbandittakeasaninputthecurrentstateofthenetworkandenablethepredictionofthenextstate.ATspromisingapplicationofRLincommunicationcontributestoschedulingparametersoptimizationacrossvariouslayers.Additionally,deeplearningcanbecombinedwithRLtofacilitatelearninglong-termtemporaldependencesequencesinsuchawaythattheaccumulationoferrorswon’tgrowveryfast[3-5].Inquantum-enhancedreinforcementlearning,aquantumagentinteractswithaclassicalorquantumenvironmentandoccasionallyreceivesrewardsforitsactions,whichallowstheagenttolearnwhattodoinordertogainmorerewards.Therearevariouswaysofachievingquantumspeedup.Forexample,in[3-6]aquantumagentwhichhasquantumprocessingcapabilityisprovidedinachievingaquadraticspeed-upforactivelearning.Alternatively,theworkin[3-1]gainsspeed-upbyprobingtheenvironmentinsuperpositions.Furthermore,ageneralmethodofquantumimprovementsinthethreeparadigmsofmachinelearningisprovidedin[3-1].Thissectionwillintroducethemajorworkin[3-1].TheQMLcanberepresentedbyanagent-environmentparadigm,wherealearningagentAinteractswithinteractswithanunknownenvironmentEviatheexchangeofmessages,interchangeablyissuedbyA(calledactions)andE(calledpercepts).Forreinforcementlearning,theperceptspacealsocontainsthereward.Inthequantumextension,bothAandEarequantumsystems,wherethesetsofactionsandperceptsbecomeHilbertspacesandformorthonormalbases.TheagentandtheenvironmentactonacommoncommunicationregisterRC(capableofrepresentingbothperceptsandactions).Theagent(environment)isdescribedasasequenceofcompletelypositivetrace-preservingmaps{M_t^A}({M_-oneforeachtime-step-thatactsontheregisterRC,butalsoaprivateregisterRA(E)thatconstitutestheinternalmemoryoftheagent(environment),asillustratedinFigure3-1.Thecentralobjectcharacterizinganinteractionis,forthequantumcase,generatedbyperformingperiodicmeasurementsonRCintheclassical(oftencalledcomputational)basis.Thegeneralizationofthisprocessforthequantumcaseisatestedinteraction:wedefinethetesterasasequenceofcontrolledmapsoftheform.Thehistory,relativetoagiventester,isdefinedtobethestateoftheregisterRT.Basedonthis,theworkestablishesaschemaforquantumimprovementsinRLagent.ThekernelideaistoobtainausefulpropertyoftheenvironmentandidentifysettingswherequantumTstechniqueprovablyhelpstoimprove.Then,constructanimprovedagentthatusesthepropertiesfromthepreviouspoints.Figure31Testedagent-environmentinteraction[3-1]Extractinginformationfromanunknownquantumstateisanimportanttaskinquantuminformation.Thegeneralwaybymeasuringtheaveragesofasetofobservablesbecomesdifficult,evenunfeasibleinlargetargetsystem,duetoitsrelyingonenoughnumberofcopiesofthetargetstate.Theworkin[3-2]showsanexperimentperformedtoreconstructanunknownphotonicquantumstatewithalimitedamountofcopies.Inparticularly,asemi-quantumreinforcementlearningapproachisemployedtoadaptonequbitstate,an"agent,"to

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论