2019届大数学全国用讲义第八章立体几何与空间向量 8.7 含答案_第1页
2019届大数学全国用讲义第八章立体几何与空间向量 8.7 含答案_第2页
2019届大数学全国用讲义第八章立体几何与空间向量 8.7 含答案_第3页
2019届大数学全国用讲义第八章立体几何与空间向量 8.7 含答案_第4页
2019届大数学全国用讲义第八章立体几何与空间向量 8.7 含答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精§8.7立体几何中的向量方法(一)——证明平行与垂直最新考纲考情考向分析1。理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3。能用向量方法证明立体几何中有关线面位置关系的一些简单定理.利用空间向量证明空间中的位置关系是近几年高考重点考查的内容,涉及直线的方向向量,平面的法向量及空间直线、平面之间位置关系的向量表示等内容.以解答题为主,主要考查空间直角坐标系的建立及空间向量坐标的运算能力及应用能力,有时也以探索论证题的形式出现.1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为eq\b\lc\{\rc\(\a\vs4\al\co1(n·a=0,,n·b=0.))2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2。(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2。3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0。题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×")(1)直线的方向向量是唯一确定的.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)若两直线的方向向量不平行,则两直线不平行.(√)(5)若a∥b,则a所在直线与b所在直线平行.(×)(6)若空间向量a平行于平面α,则a所在直线与平面α平行.(×)题组二教材改编2.[P104T2]设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为__________;当v=(4,-4,-10)时,α与β的位置关系为________.答案α⊥βα∥β解析当v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v=(4,-4,-10)时,v=-2u⇒α∥β.3.[P111T3]如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.答案垂直解析以A为原点,分别以eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→)),eq\o(AA1,\s\up6(→))所在直线为x,y,z轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A(0,0,0),Meq\b\lc\(\rc\)(\a\vs4\al\co1(0,1,\f(1,2))),Oeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),\f(1,2),0)),Neq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),0,1)),eq\o(AM,\s\up6(→))·eq\o(ON,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,1,\f(1,2)))·eq\b\lc\(\rc\)(\a\vs4\al\co1(0,-\f(1,2),1))=0,∴ON与AM垂直.题组三易错自纠4.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是()A.(-1,1,1)B.(1,-1,1)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(3),3),-\f(\r(3),3),-\f(\r(3),3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3),\f(\r(3),3),-\f(\r(3),3)))答案C解析设n=(x,y,z)为平面ABC的法向量,则eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(AB,\s\up6(→))=0,,n·\o(AC,\s\up6(→))=0,))化简得eq\b\lc\{\rc\(\a\vs4\al\co1(-x+y=0,,-x+z=0,))∴x=y=z.故选C。5.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥α答案B解析由a=-n知,n∥a,则有l⊥α,故选B.6.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则()A.α∥β B.α⊥βC.α,β相交但不垂直 D.以上均不对答案C解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.题型一利用空间向量证明平行问题典例如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG。证明∵平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,∴AB,AP,AD两两垂直,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).∴eq\o(PB,\s\up6(→))=(2,0,-2),eq\o(FE,\s\up6(→))=(0,-1,0),eq\o(FG,\s\up6(→))=(1,1,-1),设eq\o(PB,\s\up6(→))=seq\o(FE,\s\up6(→))+teq\o(FG,\s\up6(→)),即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴eq\b\lc\{\rc\(\a\vs4\al\co1(t=2,,t-s=0,,-t=-2,))解得s=t=2,∴eq\o(PB,\s\up6(→))=2eq\o(FE,\s\up6(→))+2eq\o(FG,\s\up6(→)),又∵eq\o(FE,\s\up6(→))与eq\o(FG,\s\up6(→))不共线,∴eq\o(PB,\s\up6(→)),eq\o(FE,\s\up6(→))与eq\o(FG,\s\up6(→))共面.∵PB⊄平面EFG,∴PB∥平面EFG。引申探究若本例中条件不变,证明平面EFG∥平面PBC.证明∵eq\o(EF,\s\up6(→))=(0,1,0),eq\o(BC,\s\up6(→))=(0,2,0),∴eq\o(BC,\s\up6(→))=2eq\o(EF,\s\up6(→)),∴BC∥EF。又∵EF⊄平面PBC,BC⊂平面PBC,∴EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF,GF⊂平面EFG,∴平面EFG∥平面PBC.思维升华(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.跟踪训练如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2eq\r(2),M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC。证明:PQ∥平面BCD.证明方法一如图,取BD的中点O,以O为原点,OD,OP所在直线分别为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知,A(0,eq\r(2),2),B(0,-eq\r(2),0),D(0,eq\r(2),0).设点C的坐标为(x0,y0,0).因为eq\o(AQ,\s\up6(→))=3eq\o(QC,\s\up6(→)),所以Qeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)x0,\f(\r(2),4)+\f(3,4)y0,\f(1,2))).因为M为AD的中点,故M(0,eq\r(2),1).又P为BM的中点,故Peq\b\lc\(\rc\)(\a\vs4\al\co1(0,0,\f(1,2))),所以eq\o(PQ,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)x0,\f(\r(2),4)+\f(3,4)y0,0))。又平面BCD的一个法向量为a=(0,0,1),故eq\o(PQ,\s\up6(→))·a=0.又PQ⊄平面BCD,所以PQ∥平面BCD。方法二在线段CD上取点F,使得DF=3FC,连接OF,同方法一建立空间直角坐标系,写出点A,B,C的坐标,设点C坐标为(x0,y0,0).因为eq\o(CF,\s\up6(→))=eq\f(1,4)eq\o(CD,\s\up6(→)),设点F的坐标为(x,y,0),则(x-x0,y-y0,0)=eq\f(1,4)(-x0,eq\r(2)-y0,0),所以eq\b\lc\{\rc\(\a\vs4\al\co1(x=\f(3,4)x0,,y=\f(\r(2),4)+\f(3,4)y0,))所以eq\o(OF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)x0,\f(\r(2),4)+\f(3,4)y0,0))。又由方法一知eq\o(PQ,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)x0,\f(\r(2),4)+\f(3,4)y0,0)),所以eq\o(OF,\s\up6(→))=eq\o(PQ,\s\up6(→)),所以PQ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD。题型二利用空间向量证明垂直问题命题点1证线面垂直典例如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.证明方法一设平面A1BD内的任意一条直线m的方向向量为m。由共面向量定理,则存在实数λ,μ,使m=λeq\o(BA1,\s\up6(→))+μeq\o(BD,\s\up6(→)).令eq\o(BB1,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,eq\o(BA,\s\up6(→))=c,显然它们不共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,则eq\o(BA1,\s\up6(→))=a+c,eq\o(BD,\s\up6(→))=eq\f(1,2)a+b,eq\o(AB1,\s\up6(→))=a-c,m=λeq\o(BA1,\s\up6(→))+μeq\o(BD,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))a+μb+λc,eq\o(AB1,\s\up6(→))·m=(a-c)·eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))a+μb+λc))=4eq\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))-2μ-4λ=0.故eq\o(AB1,\s\up6(→))⊥m,结论得证.方法二取BC的中点O,连接AO.因为△ABC为正三角形,所以AO⊥BC.因为在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,且平面ABC∩平面BCC1B1=BC,所以AO⊥平面BCC1B1。取B1C1的中点O1,以O为原点,分别以OB,OO1,OA所在直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,则B(1,0,0),D(-1,1,0),A1(0,2,eq\r(3)),A(0,0,eq\r(3)),B1(1,2,0).设平面A1BD的法向量为n=(x,y,z),eq\o(BA1,\s\up6(→))=(-1,2,eq\r(3)),eq\o(BD,\s\up6(→))=(-2,1,0).因为n⊥eq\o(BA1,\s\up6(→)),n⊥eq\o(BD,\s\up6(→)),故eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(BA1,\s\up6(→))=0,,n·\o(BD,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(-x+2y+\r(3)z=0,,-2x+y=0,))令x=1,则y=2,z=-eq\r(3),故n=(1,2,-eq\r(3))为平面A1BD的一个法向量,而eq\o(AB1,\s\up6(→))=(1,2,-eq\r(3)),所以eq\o(AB1,\s\up6(→))=n,所以eq\o(AB1,\s\up6(→))∥n,故AB1⊥平面A1BD。命题点2证面面垂直典例如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=eq\f(\r(2),2)AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面PAD;(2)求证:平面PAB⊥平面PDC。证明(1)如图,取AD的中点O,连接OP,OF。因为PA=PD,所以PO⊥AD。因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.又O,F分别为AD,BD的中点,所以OF∥AB。又ABCD是正方形,所以OF⊥AD.因为PA=PD=eq\f(\r(2),2)AD,所以PA⊥PD,OP=OA=eq\f(a,2)。以O为原点,OA,OF,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则Aeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),0,0)),Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(a,2),0)),Deq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2),0,0)),Peq\b\lc\(\rc\)(\a\vs4\al\co1(0,0,\f(a,2))),Beq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),a,0)),Ceq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2),a,0)).因为E为PC的中点,所以Eeq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,4),\f(a,2),\f(a,4))).易知平面PAD的一个法向量为eq\o(OF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(a,2),0)),因为eq\o(EF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,4),0,-\f(a,4))),且eq\o(OF,\s\up6(→))·eq\o(EF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(a,2),0))·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,4),0,-\f(a,4)))=0,又因为EF⊄平面PAD,所以EF∥平面PAD。(2)因为eq\o(PA,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),0,-\f(a,2))),eq\o(CD,\s\up6(→))=(0,-a,0),所以eq\o(PA,\s\up6(→))·eq\o(CD,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,2),0,-\f(a,2)))·(0,-a,0)=0,所以eq\o(PA,\s\up6(→))⊥eq\o(CD,\s\up6(→)),所以PA⊥CD.又PA⊥PD,PD∩CD=D,PD,CD⊂平面PDC,所以PA⊥平面PDC。又PA⊂平面PAB,所以平面PAB⊥平面PDC。思维升华证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.跟踪训练如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD。证明:(1)PA⊥BD;(2)平面PAD⊥平面PAB。证明(1)取BC的中点O,连接PO,∵平面PBC⊥底面ABCD,△PBC为等边三角形,平面PBC∩底面ABCD=BC,PO⊂平面PBC,∴PO⊥底面ABCD。以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系,如图所示.不妨设CD=1,则AB=BC=2,PO=eq\r(3),∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,eq\r(3)),∴eq\o(BD,\s\up6(→))=(-2,-1,0),eq\o(PA,\s\up6(→))=(1,-2,-eq\r(3)).∵eq\o(BD,\s\up6(→))·eq\o(PA,\s\up6(→))=(-2)×1+(-1)×(-2)+0×(-eq\r(3))=0,∴eq\o(PA,\s\up6(→))⊥eq\o(BD,\s\up6(→)),∴PA⊥BD。(2)取PA的中点M,连接DM,则Meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),-1,\f(\r(3),2))).∵eq\o(DM,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),0,\f(\r(3),2))),eq\o(PB,\s\up6(→))=(1,0,-eq\r(3)),∴eq\o(DM,\s\up6(→))·eq\o(PB,\s\up6(→))=eq\f(3,2)×1+0×0+eq\f(\r(3),2)×(-eq\r(3))=0,∴eq\o(DM,\s\up6(→))⊥eq\o(PB,\s\up6(→)),即DM⊥PB.∵eq\o(DM,\s\up6(→))·eq\o(PA,\s\up6(→))=eq\f(3,2)×1+0×(-2)+eq\f(\r(3),2)×(-eq\r(3))=0,∴eq\o(DM,\s\up6(→))⊥eq\o(PA,\s\up6(→)),即DM⊥PA.又∵PA∩PB=P,PA,PB⊂平面PAB,∴DM⊥平面PAB.∵DM⊂平面PAD,∴平面PAD⊥平面PAB.题型三利用空间向量解决探索性问题典例(2018·桂林模拟)如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD。(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.(1)证明设BD与AC交于点O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,∴A1O2=AAeq\o\al(2,1)+AO2-2AA1·AOcos60°=3,∴AO2+A1O2=AAeq\o\al(2,1),∴A1O⊥AO.由于平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,A1O⊂平面AA1C1C,∴A1O⊥平面ABCD.以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(eq\r(3),0,0),C(0,1,0),D(-eq\r(3),0,0),A1(0,0,eq\r(3)),C1(0,2,eq\r(3)).由于eq\o(BD,\s\up6(→))=(-2eq\r(3),0,0),eq\o(AA1,\s\up6(→))=(0,1,eq\r(3)),eq\o(AA1,\s\up6(→))·eq\o(BD,\s\up6(→))=0×(-2eq\r(3))+1×0+eq\r(3)×0=0,∴eq\o(BD,\s\up6(→))⊥eq\o(AA1,\s\up6(→)),即BD⊥AA1。(2)解假设在直线CC1上存在点P,使BP∥平面DA1C1,设eq\o(CP,\s\up6(→))=λeq\o(CC1,\s\up6(→)),P(x,y,z),则(x,y-1,z)=λ(0,1,eq\r(3)).从而有P(0,1+λ,eq\r(3)λ),eq\o(BP,\s\up6(→))=(-eq\r(3),1+λ,eq\r(3)λ).设平面DA1C1的法向量为n3=(x3,y3,z3),则eq\b\lc\{\rc\(\a\vs4\al\co1(n3⊥\o(A1C1,\s\up6(→)),,n3⊥\o(DA1,\s\up6(→)),))又eq\o(A1C1,\s\up6())=(0,2,0),eq\o(DA1,\s\up6(→))=(eq\r(3),0,eq\r(3)),则eq\b\lc\{\rc\(\a\vs4\al\co1(2y3=0,,\r(3)x3+\r(3)z3=0,))取n3=(1,0,-1),因为BP∥平面DA1C1,则n3⊥eq\o(BP,\s\up6(→)),即n3·eq\o(BP,\s\up6(→))=-eq\r(3)-eq\r(3)λ=0,得λ=-1,即点P在C1C的延长线上,且C1C=CP.思维升华对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点",若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练(2016·北京)如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=eq\r(5)。(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(1)证明∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,AB⊂平面ABCD,∴AB⊥平面PAD。∵PD⊂平面PAD,∴AB⊥PD.又PA⊥PD,PA∩AB=A,且PA,PB⊂平面PAB,∴PD⊥平面PAB。(2)解取AD的中点O,连接CO,PO.∵PA=PD,∴PO⊥AD。又∵PO⊂平面PAD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD,∵CO⊂平面ABCD,∴PO⊥CO,又∵AC=CD,∴CO⊥AD。易知P(0,0,1),B(1,1,0),D(0,-1,0),C(2,0,0),则eq\o(PB,\s\up6(→))=(1,1,-1),eq\o(PD,\s\up6(→))=(0,-1,-1),eq\o(PC,\s\up6(→))=(2,0,-1),eq\o(CD,\s\up6(→))=(-2,-1,0).设n=(x0,y0,1)为平面PCD的一个法向量.由eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(PD,\s\up6(→))=0,,n·\o(PC,\s\up6(→))=0))得eq\b\lc\{\rc\(\a\vs4\al\co1(-y0-1=0,,2x0-1=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(y0=-1,,x0=\f(1,2).))即n=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),-1,1))。设PB与平面PCD的夹角为θ,则sinθ=|cos〈n,eq\o(PB,\s\up6(→))〉|=eq\f(|n·\o(PB,\s\up6(→))|,|n||\o(PB,\s\up6(→))|)=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(\f(1,2)-1-1)),\r(\f(1,4)+1+1)×\r(3))=eq\f(\r(3),3)。(3)解设M是棱PA上一点,则存在λ∈[0,1]使得eq\o(AM,\s\up6(→))=λeq\o(AP,\s\up6(→)),因此点M(0,1-λ,λ),eq\o(BM,\s\up6(→))=(-1,-λ,λ),∵BM⊄平面PCD,∴BM∥平面PCD,当且仅当eq\o(BM,\s\up6(→))·n=0,即(-1,-λ,λ)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),-1,1))=0,解得λ=eq\f(1,4),∴在棱PA上存在点M使得BM∥平面PCD,此时eq\f(AM,AP)=eq\f(1,4)。利用向量法解决立体几何问题典例(12分)如图1所示,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图2所示.(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求二面角E-DF-C的余弦值;(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.思想方法指导对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.规范解答解(1)AB∥平面DEF,理由如下:在△ABC中,由E,F分别是AC,BC中点,得EF∥AB。又AB⊄平面DEF,EF⊂平面DEF,∴AB∥平面DEF。[1分](2)以D为原点,分别以DB,DC,DA所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,0,2),B(2,0,0),C(0,2eq\r(3),0),E(0,eq\r(3),1),F(1,eq\r(3),0),[3分]易知平面CDF的法向量为eq\o(DA,\s\up6(→))=(0,0,2),设平面EDF的法向量为n=(x,y,z),则eq\b\lc\{\rc\(\a\vs4\al\co1(\o(DF,\s\up6(→))·n=0,,\o(DE,\s\up6(→))·n=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(x+\r(3)y=0,,\r(3)y+z=0,))取n=(3,-eq\r(3),3),则cos〈eq\o(DA,\s\up6(→)),n〉=eq\f(\o(DA,\s\up6(→))·n,|\o(DA,\s\up6(→))||n|)=eq\f(\r(21),7),∴二面角E-DF-C的余弦值为eq\f(\r(21),7)。[6分](3)设P(x,y,0),则eq\o(AP,\s\up6(→))·eq\o(DE,\s\up6(→))=eq\r(3)y-2=0,∴y=eq\f(2\r(3),3).又eq\o(BP,\s\up6(→))=(x-2,y,0),eq\o(PC,\s\up6(→))=(-x,2eq\r(3)-y,0),∵eq\o(BP,\s\up6(→))∥eq\o(PC,\s\up6(→)),∴(x-2)(2eq\r(3)-y)=-xy,∴eq\r(3)x+y=2eq\r(3)。[9分]把y=eq\f(2\r(3),3)代入上式得x=eq\f(4,3),∴Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(2\r(3),3),0)),∴eq\o(BP,\s\up6(→))=eq\f(1,3)eq\o(BC,\s\up6(→)),∴点P在线段BC上.∴在线段BC上存在点Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(2\r(3),3),0)),使AP⊥DE.[12分]1.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3) B.P(-2,0,1)C.P(-4,4,0) D.P(3,-3,4)答案A解析逐一验证法,对于选项A,eq\o(MP,\s\up6(→))=(1,4,1),2.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t等于()A.3B.4C.5D.6答案C解析∵α⊥β,则u·v=-2×6+2×(-4)+4t=0,∴t=5。3.(2017·西安模拟)如图,F是正方体ABCD—A1B1C1D1的棱CD的中点,E是BB1上一点,若D1F⊥DE,则有()A.B1E=EBB.B1E=2EBC.B1E=eq\f(1,2)EBD.E与B重合答案A解析以D为坐标原点,分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方形的边长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),则eq\o(D1F,\s\up6(→))=(0,1,-2),eq\o(DE,\s\up6(→))=(2,2,z),∵eq\o(D1F,\s\up6(→))·eq\o(DE,\s\up6(→))=0×2+1×2-2z=0,∴z=1,∴B1E=EB.4.(2017·广州质检)已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________.答案α∥β解析设平面α的法向量为m=(x,y,z),由m·eq\o(AB,\s\up6(→))=0,得x·0+y-z=0,即y=z,由m·eq\o(AC,\s\up6(→))=0,得x-z=0,即x=z,取x=1,∴m=(1,1,1),m=-n,∴m∥n,∴α∥β。5.(2017·青岛模拟)已知eq\o(AB,\s\up6(→))=(1,5,-2),eq\o(BC,\s\up6(→))=(3,1,z),若eq\o(AB,\s\up6(→))⊥eq\o(BC,\s\up6(→)),eq\o(BP,\s\up6(→))=(x-1,y,-3),且BP⊥平面ABC,则实数x+y=________。答案eq\f(25,7)解析由条件得eq\b\lc\{\rc\(\a\vs4\al\co1(3+5-2z=0,,x-1+5y+6=0,,3x-1+y-3z=0,))解得x=eq\f(40,7),y=-eq\f(15,7),z=4,∴x+y=eq\f(40,7)-eq\f(15,7)=eq\f(25,7)。6.已知点P是平行四边形ABCD所在的平面外一点,如果eq\o(AB,\s\up6(→))=(2,-1,-4),eq\o(AD,\s\up6(→))=(4,2,0),eq\o(AP,\s\up6(→))=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③eq\o(AP,\s\up6(→))是平面ABCD的法向量;④eq\o(AP,\s\up6(→))∥eq\o(BD,\s\up6(→))。其中正确的序号是________.答案①②③解析∵eq\o(AB,\s\up6(→))·eq\o(AP,\s\up6(→))=0,eq\o(AD,\s\up6(→))·eq\o(AP,\s\up6(→))=0,∴AB⊥AP,AD⊥AP,则①②正确;又AB∩AD=A,∴AP⊥平面ABCD,∴eq\o(AP,\s\up6(→))是平面ABCD的法向量,则③正确;∵eq\o(BD,\s\up6(→))=eq\o(AD,\s\up6(→))-eq\o(AB,\s\up6(→))=(2,3,4),eq\o(AP,\s\up6(→))=(-1,2,-1),∴eq\o(BD,\s\up6(→))与eq\o(AP,\s\up6(→))不平行,故④错误.7.(2018·青海质检)正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.证明如图所示,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设正方体的棱长为1,则D(0,0,0),A1(1,0,1),B(1,1,0),Meq\b\lc\(\rc\)(\a\vs4\al\co1(0,1,\f(1,2))),Neq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1,1)),于是eq\o(MN,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),0,\f(1,2))),eq\o(DA1,\s\up6(→))=(1,0,1),eq\o(DB,\s\up6(→))=(1,1,0).设平面A1BD的法向量为n=(x,y,z),则n·eq\o(DA1,\s\up6(→))=0,且n·eq\o(DB,\s\up6(→))=0,得eq\b\lc\{\rc\(\a\vs4\al\co1(x+z=0,,x+y=0。))取x=1,得y=-1,z=-1.所以n=(1,-1,-1).又eq\o(MN,\s\up6(→))·n=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),0,\f(1,2)))·(1,-1,-1)=0,所以eq\o(MN,\s\up6(→))⊥n.又MN⊄平面A1BD,所以MN∥平面A1BD.8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=eq\f(1,2)PD.证明:平面PQC⊥平面DCQ.证明如图,以D为坐标原点,线段DA的长为单位长度,DA,DP,DC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Dxyz。由题意得Q(1,1,0),C(0,0,1),P(0,2,0),则eq\o(DQ,\s\up6(→))=(1,1,0),eq\o(DC,\s\up6(→))=(0,0,1),eq\o(PQ,\s\up6(→))=(1,-1,0).∴eq\o(PQ,\s\up6(→))·eq\o(DQ,\s\up6(→))=0,eq\o(PQ,\s\up6(→))·eq\o(DC,\s\up6(→))=0,即PQ⊥DQ,PQ⊥DC.又DQ∩DC=D,DQ,DC⊂平面DCQ,∴PQ⊥平面DCQ,又PQ⊂平面PQC,∴平面PQC⊥平面DCQ。9.(2017·郑州调研)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=eq\r(2),E为PD上一点,PE=2ED。(1)求证:PA⊥平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,请说明理由.(1)证明∵PA=AD=1,PD=eq\r(2),∴PA2+AD2=PD2,即PA⊥AD.又PA⊥CD,AD∩CD=D,AD,CD⊂平面ABCD,∴PA⊥平面ABCD。(2)解以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),Eeq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(2,3),\f(1,3))),eq\o(AC,\s\up6(→))=(1,1,0),eq\o(AE,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(2,3),\f(1,3))).设平面AEC的法向量为n=(x,y,z),则eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(AC,\s\up6(→))=0,,n·\o(AE,\s\up6(→))=0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(x+y=0,,2y+z=0,))令y=1,则n=(-1,1,-2).假设侧棱PC上存在一点F,且eq\o(CF,\s\up6(→))=λeq\o(CP,\s\up6(→))(0≤λ≤1),使得BF∥平面AEC,则eq\o(BF,\s\up6(→))·n=0.又∵eq\o(BF,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CF,\s\up6(→))=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),∴eq\o(BF,\s\up6(→))·n=λ+1-λ-2λ=0,∴λ=eq\f(1,2),∴存在点F,使得BF∥平面AEC,且F为PC的中点.10.(2017·成都调研)如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=eq\f(\r(2)a,3),则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.MN在平面BB1C1C内答案B解析以点C1为坐标原点,分别以C1B1,C1D1,C1C所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,由于A1M=AN=eq\f(\r(2)a,3),则Meq\b\lc\(\rc\)(\a\vs4\a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论