第三章稳态测量方法_第1页
第三章稳态测量方法_第2页
第三章稳态测量方法_第3页
第三章稳态测量方法_第4页
第三章稳态测量方法_第5页
已阅读5页,还剩79页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

作业稳态过程的定义及特点是什么?对于电化学极化为速度控制步骤的电极过程,过电势受哪些因素影响?分别写出电化学极化控制下、混合控制下和浓差极化控制下的动力学方程(忽略欧姆极化)。如何选择控制电势法还是控制电流法测得稳态极化曲线?如何判断测得的极化曲线是稳态极化曲线?不考虑浓差极化时如何在塔菲尔区域(强极化)和线性极化区求i0?如何根据旋转圆盘电极测得极化曲线判断电化学反应的控制步骤?当前1页,总共84页。电化学测量方法第三章稳态测量方法当前2页,总共84页。稳态的定义稳态系统的特点各类型的极化及其影响因素测量稳态极化曲线的方法稳态测量方法的应用第三章稳态测量方法当前3页,总共84页。第一节稳态过程在指定的时间范围内,电化学系统的参量(电极电势、电流密度、电极界面附近液层中粒子的浓度分布、电极界面状态等)变化甚微或基本不变,这种状态称为电化学稳态。右图为在t1—t2时间内为锌—空气电池以中小电流放电的稳定状态。当前4页,总共84页。稳态概念的理解:1.稳态不等于平衡状态

Zn2++2e-ZnZnZn2++2e-平衡态:正逆反应速率相等,没有净物质转移,没有净电流流过,电极状态为平衡。稳态:正逆反应速率相差一个稳定值,电流不变,电势不变,达到稳态。稳态不等于平衡态,平衡态是稳态的特例。正反应:逆反应:当前5页,总共84页。2.绝对不变的电极状态是不存在的

上述Zn2+/Zn溶解中,达到稳态时,Zn电极表面还在溶解,只不过不显著而已。

3.稳态和暂态是相对的

稳态和暂态区分标准是参量变化是否显著,这个标准是相对的。

当前6页,总共84页。1.电极界面状态不变(双电层的荷电状态不变),通过电极的电流全部用于电化学反应,i=ir

改变界面电荷状态的双电层充电电流ic=0;吸脱附引起的双电层充电电流i吸=0。二、稳态过程的特点稳态系统的特点是由达到稳态的条件决定的。当前7页,总共84页。

2.电极界面区反应物的浓度只与位置有关,与时间无关。达到稳态后,电极界面区扩散层内反应物和产物粒子的浓度分布(扩散层厚度恒定),不在随着时间变化,只是空间位置的函数。扩散电流id为恒定值。当前8页,总共84页。Fick(费克扩散)定律:单位时间内通过单位平面的扩散物质的量与浓差梯度成正比,即:对稳态系统,扩散层厚度是常数,与x无关,所以上式极化电流可以写成:

又根据法拉第定律:所以有:(2-1)

当时,电流达到极限,则极限扩散电流(2-2)当前9页,总共84页。第二节各种类型的极化及其影响因素极化:界面的电荷分布状态变化时引起的界面电势差的改变。极化的大小成为超电势.最主要的三种极化类型:电化学极化、浓差极化和电阻极化(欧姆极化)。一、电化学极化电极达到稳态时,由电化学极化反应迟缓造成的电极/溶液界面的电荷分布发生了变化,产生的电化学极化超电势。电化学极化由电荷转移步骤的反应速率决定的,它与电化学反应本质有关。当前10页,总共84页。二、浓差极化扩散过程中,反应物或产物粒子的传质迟缓,造成界面区域电荷分布状态的变化,三、欧姆极化电流流过电极体系上的欧姆电阻时,引起欧姆压降,称为欧姆极化。包括金属电极的欧姆极化和溶液的欧姆极化。当前11页,总共84页。同时存在电化学极化和浓差极化,此时两种极化超电势之和称为界面超电势当三种极化同时存在时,总的超电势为三种超电势之和,当前12页,总共84页。为了便于讨论,假定电化学反应为简单的电荷传递反应

各种类型极化的动力学规律因为稳态电流全部由于电极反应所产生,所以i与反应速度υ成正比,即::还原速度:氧化速度:还原电流:氧化电流当前13页,总共84页。(2-5),静电流密度;交换电流密度;α,β分别是正向阴极反应和逆向阳极反应的表观传递系数。(2-5)式是电子反应的稳态电化学极化方程式,也称为巴特勒-伏尔摩方程(Butler-Volmer方程)。它是电化学极化的基本方程之一。当前14页,总共84页。(2-5)式只考虑电化学极化而尚未考虑浓差极化,考虑浓差极化时和应该分别乘上校正因子cOs/cO0cRs/cR0,于是,(2-5)式变为(2-6)式是同时包括电化学极化和浓差极化的i~η关系式,既适用于不可逆电极,也适用于可逆电极,对各种程度的极化(从平衡电位→弱极化→强极化→极限电流)均适用。(2-6)(2-5)当前15页,总共84页。(2-6)式中的i0和id分别表示电化学极化和浓差极化的参量。在cO=cR=c的情况下

上式中ks为标准速度常数,表征电荷传递过程快慢的参量。

同时,i0:id这个比值代表了电化学极化与浓差极化快慢的比较,决定了电极的可逆性。

当前16页,总共84页。

浓差极化比电化学极化更容易出现,电极表现为可逆电极。基本上等于零,即整理得产物浓差极化产生的过电势反应物浓差极化产生的过电势(2-7)超电势完全由浓差极化引起,表现为可逆电极。1、浓差极化控制下的可逆电极过程当前17页,总共84页。

电化学极化比浓差极化更容易出现,电极处于不可逆状态。

电极电势处于阴极极化的强极化区,电极完全处于不可逆状态。整理得2、不可逆电极过程当前18页,总共84页。(2-7)电化学极化超电势浓差极化超电势当前19页,总共84页。若i<<(id)O,ηc≈0,η=ηe,即:这就是著名的Tafel公式。这种电极的极化曲线示意于图4-2-1,从图上也可以看出ηe和ηc具有完全不同的特征,在小电流时,以ηe为主,在大电流时,以ηc为主。它们随电流变化的规律也不相同。

当前20页,总共84页。当前21页,总共84页。把(2-7)式整理后可得到:以作图得直线,从直线斜率和截距分别可以算得αn和i0,说明电极体系处于扩散和电化学步骤混合控制。当前22页,总共84页。由(2-8)式可以看到,在平衡电位附近,-η~i曲线出现直线性,斜率为极化电阻Rp,Rp可视为三个电阻,,和的串联。对于可逆电极,即i0远大于(id)O和(id)R时,Rp定于后两项稳态浓差极化电阻;相反i0《id时,在不可逆的情况下,才可以略去后两项。b.最后讨论在平衡电位附近的情况,这时

-,因此

(2-6)式的方括号内的指数项可以展开为级数,只保留前两项,略去i·-η各项(因i小,η也小,i·-η就更小,可略),整理后得(2-8)(2-6)当前23页,总共84页。相反i0《id时,不可逆的情况下,略去后两项。

Rp取决于第一项电化学极化电阻Rct,也称为电荷传递电阻。

=Rct(2-8)(2-8)式整理后得,利用(2-8)或(2-9)式可以从稳态极化曲线在平衡电位附近的斜率Rp计算交换电流密度i0。(2-9)当前24页,总共84页。

除了电化学极化和浓差极化外,还有欧姆极化。电极界面两侧为电子导体(通常为金属)和离子导体(电解质溶液),它们都有电阻,电流通过时就产生欧姆电位降,称为欧姆过电位ηR,它与i的关系符合欧姆定律。在一般情况下,溶液电阻RL远大于金属电阻,因此

负号:是因规定阴极电流为正,而阴极超电势为负。Ru是补偿溶液电阻,可以从溶液的比电阻及液层的截面和厚度计算得到。当前25页,总共84页。

由于ηR的存在,在电极界面的真实超电势比测量到的超电势小ηR的数值,所以电极/溶液界面的真实超电势应为,(2-6)、(2-7)和(2-8)式分别作相应的变动如下:(2-8)(2-7)(2-6)当前26页,总共84页。

当i0很小时,即使通过不大的净电流也能使电极电势发生较大的变化,这种电极称为“极化容量小”或“易极化电极”,有时也称为电极反应的“可逆性小”。

若i0=0,则不需要通过电解电流(即没有电极反应)也能改变电极电势,因而称为“理想极化电极”。研究双电层构造时所用电极体系最好应有近似于“理想极化电极”的性质(见表4-1)。当前27页,总共84页。若i0很大,则电极上可以通过很大的净电流密度而电极电势改变很小。这种电极常称为“极化容量大”或“难极化电极”。由于在这种电极上通过外电流时正、反向电流的数仍然几乎相等,有时就称为电极反应的“可逆性大”。

若i0→∞,则无论通过多大的净电流也不会引起电化学极化。这种电极称为“理想可逆电极”或“理想不极化电极”。电极电势测量时用作“参比电极”的体系或多或少地应具有“不极化电极”的性质(见表4-1)。

当前28页,总共84页。表4-1电极体系根据i0的大小分类电极体的动力学性质i0→0i0→小i0→大i0→∞极化性能理想极化电极易极化电极难极化电极理想不极化电极电极反应的“可逆程度”完全“不可逆”“可逆程度”小“可逆程度”大完全“可逆”I~η关系电极电势可以任意改变一般为半对数关系一般为直线关系电极电势不会改变i0的数值当前29页,总共84页。一、电化学极化ηe的影响因素

1.影响因素

电化学极化是由电化学反应速度决定的,它与电化学反应本质有关。化学反应的活化能比较高,且各种反应的活化能相差悬殊,因此反应速度的差别是以数量级计(即通常相差达几个数量级)。

⑦i0。①温度;②催化剂的活性;③电极实际表面积;④吸附或成相覆盖层(如钝化膜);⑤界面电场;⑥i;当前30页,总共84页。

1.影响因素

浓差极化是由扩散速度决定的。③浓度升高,不易极化;浓度下降,易极化。①扩散层的厚度;②扩散系数;二、浓差极化ηc的影响因素

当前31页,总共84页。2.特点

①各种物质的扩散系数D都在同种界质中大多是同一数量级,D固=10-9cm2/s;D液=10-5cm2/s;D气=10-1cm2/s;为了鉴别电极过程是由电化学步骤控制还是由扩散步骤控制,现将它们作一对比(表4-2)②温度对D的影响也较小,大约2﹪/℃;③达到稳态的时间较长,一般需几秒至几十秒,甚至于几百秒;④当i接近id时ηc增长很快。当前32页,总共84页。表4-2电化学极化与浓差极化的比较项目电化学极化浓差极化极化曲线形式低电流密度下,η~i成正比;高电流密度下,η~lgi成正比反应产物不溶时,η~lgid/(id-i)成正比;可溶时,η~lgi/(id-i)成正比搅拌溶液对电流密度的影响不改变电流密度电极材料及表面状态对反应速率的影响有显著的影响无影响改变界面电势分布对反应速率的影响有影响无影响反应速率的温度系数一般比较高(活化能高)较低,2%/℃电极真实表面积对反应速率的影响反应速率与电极的真实表面积成正比若扩散层厚度超过电极表面的粗糙度,则反应速率正比于表观面积,与真实表面积无关当前33页,总共84页。

1.影响因素三、欧姆极化ηR②ηR与i成正比。

①溶液的电导率;②电极间距离;③温度(主要对弱电质),影响扩散过程和离子导电过程。2.特点

①跟随性;当前34页,总共84页。三、控制电势法和控制电流法1.按自变量控制方式分为:①控制电流法(恒电流法)

又分为经典恒电流法和电子恒电流法

②控制电势法(恒电势法)2.按自变量给定方式分为:①阶跃法测定稳态极化曲线;

又分为

逐点手动法、阶梯波法

②慢扫描法测定稳态极化曲线。

当前35页,总共84页。①控制电流法(恒电流法);

在恒电流电路或恒电流仪的保证下,控制通过研究电极的极化电流按照人们预想的规律变化,不受电解池阻抗的影响,同时测量相应电极电势的方法。包括经典恒流法和电子恒流法。当前36页,总共84页。所以利用高压大电阻实现恒流,电路图如图所示:因为R大>>R池

R大:R池>1000时,控制电流的精度为0.1%。优点:电路简单,易于实现;缺点:恒电流范围小。经典恒流法当前37页,总共84页。电子恒流法

电子恒流法是利用电子恒流装置,调节通过研究电极的电流按人们预想的规律变化,以达到控制电流的目的,可使用晶体管恒电流源或专用的恒电流仪。当前38页,总共84页。

控制电势法(恒电势法)

在恒电势电路或恒电势仪的保证下,控制研究电极的电势按照人们预想的规律变化,不受电极系统抗阻变化的影响,同时测量相应电流的方法。恒电势仪是电化学研究的专用仪器,几乎所有的电化学研究都离不开恒电势仪。另外,恒电势仪通常也具有恒电流功能。当前39页,总共84页。不同领域中,恒电势仪的性能指标往往各有侧重,要求各不相同,需要选择相应的产品型号。电分析领域,通常只需要较小的输出电流和控制电流范围;电池、燃料电池的研究和开发,则要求有大电流的输出能力。总之,应该根据实验对象的具体要求选择不同性能的恒电势仪。当前40页,总共84页。

控制电流法和控制电势法的选择控制电流法和控制电势法各有特点,要根据具体情况选择:①对于单调函数极化曲线,恒流恒电势均可;

②对于极化曲线有电流极大值,应选择恒电势法;

③对于极化曲线有电势极大值,应选择恒电流法。选择自变量使每个自变量下只有一个函数值对应。实质当前41页,总共84页。1.按自变量给定方式分为阶跃法和慢扫描法:①阶跃法

逐点控制测量极化电流(或极化电势),对应的测定电极过程进入稳态时的极化电势(或极化电流)

又分为逐点手动法和阶梯波法。逐点手动扫描法:操作简单、工作量大、时间长、由于测量者对稳态的标准掌握不同,重现性差。四、稳态极化曲线的测定当前42页,总共84页。当前43页,总共84页。阶梯波法阶梯波法:利用阶梯波发生器控制恒电流仪或恒电势仪从而自动测定极化曲线。阶梯波阶跃幅值的大小及时间间隔的长短应根据实验要求而定。当前44页,总共84页。阶梯波法当阶跃幅值足够小而阶梯足够多时,测得的极化曲线就接近于慢扫描极化曲线。当前45页,总共84页。慢扫描法利用慢速线性扫描信号控制恒电势仪或恒电流仪,使极化测量的自变量连续线性变化,同时自动绘制极化曲线的方法。当前46页,总共84页。当前47页,总共84页。电极稳态的建立需要一定的时间,对于不同的体系达到稳态所需的时间不同。因此,扫描速度不同,得到的结果就不一样。慢扫描法当前48页,总共84页。3.如何判断测得的极化曲线是否达到稳态?依次减小扫描速度,测定数条极化曲线,当继续减小扫描速度而极化曲线不再明显变化时,此速度下得到的极化曲线便是稳态极化曲线。当前49页,总共84页。五、根据稳态极化曲线测定电极反应动力学参数的方法稳态极化曲线是表示电极反应速率(电流密度)与电极电势的关系曲线。极化曲线是研究电极过程动力学的最基本最主要的方法:判断电极反应的特征及控制步骤判断给定体系可能发生的反应及最大速度测定电极反应的动力学参数,i0、α、β及腐蚀速率等。当前50页,总共84页。一、塔菲尔直线外推法测定交换电流当电极过程处于电化学步骤控制时,不考虑浓差极化的影响,电极过程的过电势与电流密度之间的关系可由Butler-Volmer方程表示

强极化条件下,完全不可逆,电极电势偏离平衡电势。分别考虑只发生正向阴极反应(α)和逆向阳极反应(β)。(2-9)(2-10)(2-11)当前51页,总共84页。阴极极化Tafel直线的斜率为:阳极极化Tafel直线的斜率为:根据阴极、阳极Tafel直线的斜率可分别求出表观传递系数α、β。将两条阴、阳极Tafel直线外推至交点,交点的横坐标为,纵坐标应为,即对应于平衡电势。可由交点求出交换电流。当前52页,总共84页。当前53页,总共84页。根据Tafel直线的斜率可求出:通过求出根据外推得到的交点的横坐标可求得交换电流密度当前54页,总共84页。二、线性极化法测定极化电阻Rp及交换电流在弱极化条件下,即平衡电势附近,不考虑浓差极化电极处于阴极线性极化区时,B-V方程可以简化为成直线关系,由直线斜率可得极化电阻通过可求出交换电流密度当前55页,总共84页。极化电阻的Rp可有多种测量方法得到。当前56页,总共84页。当前57页,总共84页。三、利用弱极化区测定动力学参数强极化区

——忽略逆反应线性极化区——平衡电势附近氧化速率与还原速率接近相等。弱极化区——位于二者之间,大约在之间符合B—V公式。强极化法:极化电流密度大,对电极体系扰动大;线性极化法:由于近似处理带来的误差较大;弱极化区:测量范围小(-70~+70mv之间),对被测体系扰动小且结果精度高。特点:当前58页,总共84页。在弱极化区,电极上的氧化速率与还原速率既不接近也不相等,也未相差到可以忽略逆反应的程度,其动力学关系符合B-V公式。三点法:当前59页,总共84页。三个不同极化超电势下的极化电流(2-12)(2-13)(2-14)根据(2-12)式和(2-14)式可得(2-15)根据(2-12)式和(2-13)式可得因此有:(2-16)(2-17)(2-18)将(2-18)式带入(2-12)式可得(2-19)当前60页,总共84页。(2-19)给定一系列不同的测得相对应的;计算得出对应的S值。

得到一条过原点的直线,由直线的斜率可以求得由得到(2-15)(2-18)(2-20)(2-21)根据得到,(2-22)(2-23)当前61页,总共84页。(2-22)(2-23)

分别得到两条过原点的直线,由他们的斜率可以测定αn和βn。

当前62页,总共84页。六、稳态测量方法的应用

稳态极化曲线是表示电极的反应速率(即电流密度)与电极电势的关系曲线。对于同样的体系,在稳态下,在同样的电势下,将发生同样的反应,并且以同样的反应速率进行。因此,稳态极化曲线是研究电极过程动力学的最重要的最基本的方法,它在电化学基础研究、化学电源、电镀、电冶金、电解和金属腐蚀领域都有广泛的应用。当前63页,总共84页。①确定化学电源的正、负极对应的单电极极化曲线;

在化学电源中的应用②选择配方;

B比A好。③选择添加剂。

当前64页,总共84页。

选择阳极面积镀液配方选择制作不同配方的镀液的阴极极化曲线,选择在工作电流密度下产生阴极极化作用最大的镀液配方对镀层质量最有利。2.在电镀工艺中的应用S2>S1,I至顿↑。3.在电解中的应用如何降低槽压?S2>S1,i至顿↑。当前65页,总共84页。七、流体动力学方法—强制对流技术强制对流技术:

当电极和溶液之间发生相对运动时,反应物和产物的物质传递过程收到强制对流的影响。这一类电化学测量方法也称为流体动力学方法。分类:电极本身处于运动状态,如旋转圆盘电极、滴汞电极、振动电极。强制溶液流过静止的电极,如网状电极、颗粒状电极和管道电极。当前66页,总共84页。优点:电极表面扩散层厚度均匀分布;液相扩散传质速率可在交大范围内调制;研究快速电极反应更快达到稳态,提高测量精度。不足:提供可重现的物质传递条件的流体动力学电极困难;流体力学方面的理论处理比较困难(溶液流速的分布和转速、溶液粘度及密度之间的关系函数)。当前67页,总共84页。一、旋转圆盘电极1、旋转圆盘电极的结构当前68页,总共84页。2.旋转圆盘电极的特点与优点旋转电极表面处扩散层厚度一致电流电位分布一致扩散层的厚度可控制与测量可用于快速反应的速度常数测定,动力学上限10-3-10-4cm/s重现性好(与静止电极相比)当前69页,总共84页。3.旋转电极的流体力学特征其中:

υr:径向流速(离心力的作用);

υy:轴向流速(压力差作用);

υФ:切向流速(粘滞作用)。

当前70页,总共84页。υr、υФ与离开旋转轴的径向距离r的关系

υr、υy、

υФ与电极转速、溶液粘度和离开电极表面的轴距离y有关。当前71页,总共84页。当前72页,总共84页。4、注意事项:1.适用于无限薄电极,无限大体系中,电极与电解液体系的关系;2.旋转电极与镶嵌物之间良好结合,防止边缘效应的产生;3.流体是稳流/层流,而不是湍流或涡流;4.参比电极的位置(鲁金毛细管

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论