下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4页共4页高三数学函数知识学习方法总结更多高三数学相关内容推荐↓↓↓高三函数体命题方向高考函数与方程思想的命题主要体现在三个方面①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。高三数学函数题答题技巧对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。对数函数的图形只不过的指数函数的图形的关于直线y=____的对称图形,因为它们互为反函数。(1)对数函数的定义域为大于0的实数集合。(2)对数函数的值域为全部实数集合。(3)函数总是通过(1,0)这点。(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。(5)显然对数函数无界。高三数学指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得____能够取整个实数集合为定义域,则只有使得可以得到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与____轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与____轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于____轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数无界。高三数学函数奇偶性一般地,对于函数f(____)(1)如果对于函数定义域内的任意一个____,都有f(-____)=-f(____),那么函数f(____)就叫做奇函数。(2)如果对于函数定义域内的任意一个____,都有f(-____)=f(____),那么函数f(____)就叫做偶函数。(3)如果对于函数定义域内的任意一个____,f(-____)=-f(____)与f(-____)=f(____)同时成立,那么函数f(____)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个____,f(-____)=-f(____)与f(-____)=f(____)都不能成立,那么函数f(____)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(____)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义高三数学函数的性质与图象复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.这部分内容的重点是对函数单调性和奇偶性定义的深入理解.函数的单调性只能在函数的定义域内来讨论.函数y=f(____)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-____)=f(____)和f(-____)=-f(____)这两个等式上,要明确对定义域内任意一个____,都有f(-____)=f(____),f(-____)=-f(____)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(____)的图象关于直线____=a对称的充要条件是对定义域内的任意____,都有f(__
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度安置房建设项目质量保证合同范本2篇
- 2024版公司向股东借款合同范本
- 2024海鲜类批发买卖合同范本
- 2024年无抵押担保个人创业项目借款合同6篇
- 数字内容服务合同
- 2024年行政复议案件调解服务委托合同3篇
- 2024年资产代管合同样本2篇
- 2024浅析协议离婚制度
- 二零二五年度大型物流仓储设施经营权转让协议3篇
- 普通公司员工手册大全
- 寒假弯道超车主题励志班会课件
- 触电与应急知识培训总结
- 分布式光伏高处作业专项施工方案
- 代理记账机构自查报告范文
- 项目贷款保证函书
- 新版标准日本语(初级)上下册单词默写表
- 面向5G网络建设的站点供电技术应用与发展
- 普通语文课程标准(2023年核心素养版)
- 洗涤剂常用原料
- 曼陀罗中毒课件
- (新版)焊工(初级)理论知识考试200题及答案
评论
0/150
提交评论