




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019-2020学年河北省邯郸市大名县第一高二下学期第一次半月考数学试题一、单选题1.随机变量的概率分布规律为其中是常数,则的值为()A. B. C. D.【答案】D【解析】【详解】由题意,由所有概率的和为可得,,故选.2.如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是()A.78 B.60 C.48 D.36【答案】B【解析】根据题意,假设6个小球为A、B、C、D、E、F,要求C在B之前,B在A之前,且E在D之间被击中,先不考虑限制条件,计算将6个小球按被击中的顺序排成一排的情况,进而计算ABC、DE之间的顺序,据此分析可得答案.【详解】解:根据题意,如图:假设6个小球为A、B、C、D、E、F,要求C在B之前,B在A之前,且E在D之前被击中,若不考虑限制条件,将6个小球按被击中的顺序排成一排,有A66=720种情况,ABC之间的顺序有A33种,DE之间的顺序有A22种,其中C在B之前,B在A之前,且E在D之间,则把这6个球全部击中射击方法数是60种;故选:B.【点睛】本题考查排列组合的应用,解题的关键在于将原问题转化为有固定顺序的排列问题.3.纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为().A. B. C. D.【答案】B【解析】本题首先可以确定所有可能事件的数量为,然后确定满足“一枚凤纹徽章也没有”的所有可能事件的数目为,最后根据“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”即可得出结果.【详解】从9枚纹样微章中选择3枚,所有可能事件的数量为,满足“一枚凤纹徽章也没有”的所有可能事件的数目为,因为“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”,所以,故选:B.【点睛】本题考查超几何分布的相关概率计算,考查对立事件的灵活应用,考查推理能力,体现了基础性和综合性,是简单题.4.从标1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为ξ,那么随机变量ξ可能取的值有()A.17个 B.18个C.19个 D.20个【答案】A【解析】2支竹签上的数字是1~10中的两个,若其中一个为1,另一个可取2~10,相应X可取得3~11,同理一个为2,另一个可取3~10,相应X可取得5~12,以此类推,可看到X可取得3~19间的所有整数,共17个.5.2013年5月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现存在无穷多差小于7000万的素数对.这是第一次有人证明存在无穷多组间距小于定值的素数对.孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过16的素数中任意取出不同的两个,则可组成孪生素数的概率为()A. B. C. D.【答案】D【解析】用列举法写出所有基本事件即可得概率.【详解】不超过16的素数有2,3,5,7,11,13共6个,任取2个的基本事件有:,共15个,其中可组成孪生素数的有共3个,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题关键是写出所有的基本事件.6.已知等差数列的第6项是二项式展开式的常数项,则=()A.160 B.-160 C.320 D.-320【答案】D【解析】二项式展开式的常数项是由个和个相乘得到的,所以常数项为所以,由等差数列的性质可得,故选D.7.年月日,某地援鄂医护人员,,,,,,人(其中是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这名医护人员和接见他们的一位领导共人站一排进行拍照,则领导和队长站在两端且相邻,而不相邻的排法种数为()A.种 B.种 C.种 D.种【答案】D【解析】根据题意,分步进行分析:①领导和队长站在两端,由排列数公式计算可得其排法数目,②中间人分种情况讨论:若相邻且与相邻,若相邻且不与相邻,由加法原理可得其排法数目,由分步计数原理计算可得答案.【详解】让这名医护人员和接见他们的一位领导共人站一排进行拍照,则领导和队长站在两端且相邻分2步进行分析:①领导和队长站在两端,有种情况,②中间人分种情况讨论:若相邻且与相邻,有种安排方法,若相邻且不与相邻,有种安排方法,则中间人有种安排方法,则有种不同的安排方法;故选:D.【点睛】本题主要考查了带有限制的排列问题,解题关键是掌握分步计数原理和特殊元素优先排列,考查了分析能力和计算能力,属于中档题.8.若,则的值为()A. B. C. D.【答案】C【解析】计算,根据对称性得到答案.【详解】展开式的通项为:,故,,根据对称性知:.故选:C.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.9.如图,将一个四棱锥的每一个面染上一种颜色,使每两个具有公共棱的面染成不同颜色,如果只有4种颜色可供使用,则不同的染色方法总数为()A.36 B.48 C.72 D.108【答案】C【解析】对面与面同色和不同色进行分类,结合分步乘法计算原理,即可得出答案.【详解】当面与面同色时,面有4种方法,面有3种方法,面有2种方法,面有1种方法,面有2种方法,即种当面与面不同色时,面有4种方法,面有3种方法,面有2种方法,面有1种方法,面有1种方法,即种即不同的染色方法总数为种故选:C【点睛】本题主要考查了计数原理的应用,属于中档题.10.展开并合同类项后的项数是()A.11 B.66 C.76 D.134【答案】B【解析】试题分析:展开后有11项,再将展开后有,故共有项,选B.【考点】二项展开式定理二、多选题11.如果是一个随机变量,则下列命题中的真命题有()A.取每一个可能值的概率都是非负数 B.取所有可能值的概率之和是1C.的取值与自然数一一对应 D.的取值是实数【答案】ABD【解析】根据随机变量及其分布列性质即可判断.【详解】根据概率性质可得取每一个可能值的概率都是非负数,所以A正确;取所有可能值的概率之和是1,所以B正确;的取值是实数,不一定是自然数,所以C错误,D正确.故选:ABD【点睛】此题考查随机变量概念辨析,需要数量掌握随机变量及其分布列的性质,根据性质辨析得解.12.将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有().A. B. C. D.18【答案】BC【解析】根据题意,分析可得三个盒子中有1个中放2个球,有2种解法:(1)分2步进行分析:①先将四个不同的小球分成3组,②将分好的3组全排列,对应放到3个盒子中,由分步计数原理计算可得答案;(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,②将剩下的2个小球全排列,放入剩下的2个小盒中,由分步计数原理计算可得答案.【详解】根据题意,四个不同的小球放入三个分别标有1〜3号的盒子中,且没有空盒,则三个盒子中有1个中放2个球,剩下的2个盒子中各放1个,有2种解法:(1)分2步进行分析:①先将四个不同的小球分成3组,有种分组方法;②将分好的3组全排列,对应放到3个盒子中,有种放法;则没有空盒的放法有种;(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有种情况;②将剩下的2个小球全排列,放入剩下的2个小盒中,有种放法;则没有空盒的放法有种;故选:BC.【点睛】本题考查排列、组合的应用,考查分类讨论思想,考查逻辑推理能力和运算求解能力.三、填空题13.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有__________种(用数字作答).【答案】36【解析】先选出学生选报的社团,共有种选法,再把这3名同学分配到这两个社团,共有,故恰有2个社团没有同学选报数有.14.的展开式中,含项的系数为______.【答案】【解析】写出此展开式的通项,由确定r,再根据展开式中含的项及y的次数求得含项的系数.【详解】展开式的通项为,令,则展开式中含的项为,所以含项的系数为.【点睛】本题考查求二项展开式中特定项的系数,属于中档题.15.在一次比赛中,某队的六名队员均获得奖牌,共获得4枚金牌2枚银牌,在颁奖晚会上,这六名队员与1名领队排成一排合影,若两名银牌获得者需站在领队的同侧,则不同的排法共有______种.(用数字作答)【答案】3360【解析】采用插空法,先将两名银牌获得者及领队排好顺序后,再将四名金牌获得者依次进行插空处理,进而求出结果.【详解】将四名金牌获得者分别记为,两名银牌获得者分别记为甲、乙,考虑两名银牌获得者甲、乙及领队的顺序,有种情况,三人排好后,有4个空位,在4个空位中任选1个安排,有4种情况,四人排好后,有5个空位,在5个空位中任选个安排,有5种情况,五人排好后,有6个空位,在6个空位中任选1个安排,有6种情况,六人排好后,有7个空位,在7个空位中任选1个安排,有7种情况,则除甲、乙及领队外,剩余四人的排法有(种),故不同的排法共有(种).故答案为:3360.【点睛】本题主要考查排列数的应用以及排列数的计算问题,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.16.设n为正整数,展开式的二项式系数最大值为x,展开式的二项式系数的最大值为y,若,则n=__________.【答案】6【解析】根据二项式系数的性质求出x和y,代入,计算即可.【详解】解:由题意知,,,,即,故答案为:6【点睛】考查二项式系数的性质及组合数的运算,基础题.四、解答题17.在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列.【答案】(1);(2)的分布列为010205060100【解析】(1)根据题意先求出该顾客没有中奖的概率,再根据与对立事件的概率和为1,即可得到该顾客中奖的概率.(2)根据题意得的取值可能为0,10,20,50,60,100,根据古典概率公式分别求出其概率,进而求出X的概率分布列.【详解】(1)该顾客获奖的概率为.(2)根据题意得,的取值可能为0,10,20,50,60,100,,,,,.的分布列为010205060100【点睛】本题主要考查古典概型事件的概率求解.古典概型的特点:①有限性(所有可能出现的基本事件只有有限个);②等可能性(每个基本事件出现的可能性相等).基本事件的特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.18.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【答案】(1);(2).【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度计划中应该关注的关键指标
- 个人合作投资合同标准文本
- 两人合伙开家具店合同标准文本
- 上海社保合同标准文本
- 2025湖北省智能手机买卖合同(示范合同)
- 不锈钢花池合同标准文本
- 全国买卖合同标准文本
- 消防安全与保安人员的职责计划
- 保安总公司合同标准文本
- 2025光纤敷设项目合同
- 钢材检测报告
- DB13-T1349-2010超贫磁铁矿勘查技术规范
- 2022年初中美术学业水平测试题(附答案)
- LGJ、JKLYJ、JKLGYJ输电线路导线参数
- DB31 933-2015 上海市大气污染物综合排放标准
- ASTM B658 B658M-11(2020) 无缝和焊接锆和锆合金管标准规格
- 译林版九年级上册英语单词默写打印版
- 合成氨工艺及设计计算
- 风荷载作用下的内力和位移计算
- 部编版五年级下册道德与法治课件第5课 建立良好的公共秩序
- 沟槽管件尺寸对照表
评论
0/150
提交评论