




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电化学电容器及其电极材料的进展介绍报告人:王宇学号:BA13014006Whatiscapacitors?Whatiselectrochemicalcapacitors(supercapacitors)?电容器(Capacitor)是两金属板之间存在绝缘介质的一种电路元件。其单位为法拉,符号为F。电容器利用二个导体之间的电场来储存能量,二导体所带的电荷大小相等,但符号相反。当电性相反的电荷分别在电容器的两端累积,电容器两端的电位差和电荷产生的电场开始增加。累积电荷越多,为抵抗电场所需要作的功就越大。储存在电容器的能量(国际单位制中,单位为焦耳)等于建立电容两端的电压和电场所需要的能量。电化学电容器(supercapacitor)与上述电容器不同的地方是:两金属板之间存在绝缘介质变成了浸没在电解液中具有电化学活性的材料。基本原理相同,都是在电极处累积电荷达到能量存储的目的。Quetal.JournalofPowerSources,74(1998)99–107油相与水相E=½CV2Aqueouselectrolytes,suchasacids(e.g.,H2SO4)andalkalis(e.g.,KOH)havetheadvantageofhighionicconductivity(upto∼1
S
cm−1),lowcostandwideacceptance.Ontheotherhand,theyhavetheinherentdisadvantageofarestrictedvoltagerangewitharelativelylowpositionvoltageof∼1.23
V.Non-aqueouselectrolytesofvarioustypeshavebeendevelopedthatallowtheuseofcelloperatingvoltages∼2.5
V.Non-aqueouselectrolytemixturessuchaspropylenecarbonateoracetonitrile,containingdissolvedquaternaryalkylammoniumsalts,havebeenemployedinmanycommercialsupercapacitors,particularlythosetargetinghigherenergyapplications.Theelectricalresistivityofnon-ueouselectrolytesis,however,atleastanorderofmagnitudehigherthanthatofaqueouselectrolytesandthereforetheresultingcapacitorsgenerallyhaveahigherinternalresistance.NatureMater.7,845-854(2008)Ifasupercapacitorisusedinanelectricvehicle,thespecificpowershowshowfastonecango,andthespecificenergyshowshowfaronecangoonasinglecharge.Timesshownarethetimeconstantsofthedevices,obtainedbydividingtheenergydensitybythepower.Electrochemicalcapacitorscurrentlyfillthegapbetweenbatteriesandconventionalsolidstateandelectrolyticcapacitors.能量比较图特点Batteries:HighenergydensityandlowpowerdensityenergystoragesystemsElectrochemicalcapacitors:HighpowerdensityandlowenergydensitySolarenergyWind
energyWaterenergy……Advantagesof
Electrochemicalcapacitors(EC):HighpowerdensityLonglifeexpectancyLongshelflifeWiderangeofoperatingtemperatures
(downto-40°C).
EnvironmentalfriendlinessSafetyChallengesfor
EC:
LowenergydensityHighself-dischargingrateThefirstpatentdescribingtheconceptofanECwasfiledin1957byBecker.However,notuntilthe1990sdidECtechnologybegintodrawsomeattention,inthefieldofhybridelectricvehicles.Example1)toimprovetheoverallefficiencyofthevehicle2)toreducelong-termcostsbyextendingthelifeofthebatteries3)toimprovetheaccelerationcapabilitiesofthevehicle4)toreduceshort-termcostsbyreplacingsomeofthebatteries.IEEETransactionsonIndustryApplications,44,108-114(2008)InternationalSymposiumonPowerElectronics,ElectricalDrives,AutomationandMotion,727-732(2008)Theadditionofsupercapacitorscanplishoneormoreofthefollowinggoals:EC的分类:1.Electrostaticsupercapacitors2.FaradaicsupercapacitorsElectrochemicaldouble-layercapacitors(EDLCs)areelectrochemicalcapacitorsthatstorethechargeelectrostaticallyusingreversibleadsorptionofionsoftheelectrolyteontoactivematerialsthatareelectrochemicallystableandhavehighaccessibleSSA.SomeECsusefast,reversibleredoxreactionsatthesurfaceofactivematerials,thusdefiningwhatiscalledthepseudo-capacitivebehaviour.大多是碳材料大多是金属氧化物以及导电聚合物InternationalJournalofHydrogenEnergy.34,4889-4899(2009)Principleofasingle-celldouble-layercapacitorandillustrationofthepotentialdropattheelectrode/electrolyteinterface.Electrochemicaldouble-layercapacitors(EDLCs)Carbonmaterialsareconsideredprospective
electrode
materialsforindustrialization.highconductivity,highsurface-arearange(∼1to>2000
m2
g−1),goodcorrosionresistance,hightemperaturestability,controlledporestructure,processabilityandcompatibilityincompositematerials,relativelylowcost.ElectrodematerialcharacteristicsforEDLC
Highsurfaceareaactivematerialsa,SEMimageofSWNT-foreststructuralcollapsefromasingledropofliquid.
b,Schematicdiagramofthecollapseofthealignedlow-densityas-grownforest(above)tothehighlydenselypackedSWNTsolid(below).
c,Overlaidpicturesillustratingthedecreaseinlateraldimensionsbefore(grey)andafter(black)collapse.Thedouble-endedarrowindicatesthetubealignmentdirection.Scalebar,1
cm.
d,Ramanspectraforas-grownforest(blue)andSWNTsolid(red).e,
f,SEMimagesoftheas-grownforest(e)andsolid(f).
g,Atomicforcemicroscopeimageofsolidsurface.Brunauer–Emmett–Teller(BET)surfaceareaforthesolid,asdeterminedfromnitrogenadsorptionisothermswas1,000
m2
g-1,almostthesamewithforest.Forforests,thetypicalmassdensitywas0.03
g
cm-3;Forsolid,0.55
g
cm-3NatureMaterials
5,987-994(2006)a,b,CyclicvoltammogramsoftheEDLCusingtheSWNTsolidsheet(red)andas-grownforest(black)aselectrodescomparingthecapacitanceperweight(a)andcapacitancepervolume(b).
c,ChangeinthecapacitancepervolumeusingtheSWNTsolidsheet(red)andas-grownforest(black).
d,SchematicmodelcomparingtheiondiffusionforactivatedcarbonandtheSWNTsolidmaterial.
e,CapacitanceversusdischargecurrentdensitycomparingSWNTsolid(red)andactivatedcarbon(blue)for0.1and0.5
mmelectrodethicknesses(dashedandsolidlines,respectively).
f,Potentialdropassociatedwithanincreaseininternalresistance(IRdrop)forSWNTsolid(red)andactivatedcarbon(blue)for0.1and0.5
mmelectrodethicknesses(dashedandsolidlines,respectively).CapacitanceoftheSWNTsolidEDLCwasestimatedas20
F
g-1
fromthedischargecurvesofcellschargedat2.5
Vforatwo-electrodecell,andcorrespondsto80
F
g-1
forathree-electrodecell.Withtetraethylammoniumtetrafluoroborate(Et4NBF4)/propylenecarbonateelectrolyte.Zhu
etal.,Science
332,
1537-1541(2008)GraphenehasatheoreticalSSAof2630m2/gActivationwithKOHofmicrowaveexfoliatedGO(MEGO)toachieveSSAvaluesupto3100m2/g.BMIMBF4/ANaselectrolyte.Usingthespecificcapacitancevalueof166F/g(fromthedischargecurvewithaconstantcurrentof5.7A/g)andworkingvoltageof3.5V,theenergydensityis~70Wh/kgforthea-MEGOinthecell.
Redox-basedelectrochemicalcapacitorsCathodematerials:withtheaverageworkingpotentialofabove0Vvs.SCEAnodematerials:withtheaverageworkingpotentialofbelow0Vvs.SCE.Qu
etal.,Adv.Mater.
23,
5574-5580(2011)Qu
etal.,Adv.Mater.
23,
5574-5580(2011)Hydrousrutheniumoxide(RuO2·xH2O)NTswereelectrodepositedontoAAO-coatedgraphite(10×10×3mm)orTisubstrates(10×10×0.5mm)Itcanbedescribedasafast,reversibleelectrontransfertogetherwithanelectro-adsorptionofprotonsonthesurfaceofRuO2NTs,accordingtoequation,whereRuoxidationstatescanchangefrom(ii)upto(iv):where0≤x≤2.RuO2NTsforSupercapacitorsTherectangle-likeshapeofalli−Ecurvesmeasuredatvariousscanratesin1.0MH2SO4
(Figure4A)fortheannealedRuO2·xH2ONTsrevealstheperfectelectrochemicalreversibilityoftheFaradaicredoxtransitionsontheseoxideNTs.Figure4(A)Cyclicvoltammogramsmeasuredat(1)1000,(2)750,(3)500,(4)250,and(5)100mVs-1,and(B)dependenceofthecapacitancelossonthescanrateofCVfrom10to1000mVs-1
foranannealedRuO2·xH2ONTarrayedelectrode(0.19±0.01mgcm-2).(C)Electrochemicalimpedancespectrameasuredatvariouspotentialswithpotentialamplitudeof10mV.(D)FrequencydependenceofspecificcapacitanceforanannealedRuO2·xH2ONTarrayedelectrode(0.21±0.01mgcm-2).Theelectrolyteforelectrochemicalanalysesis1.0MH2SO4.ChargeStorageMechanismofMnO2
ElectrodeUsedinAqueousElectrochemicalCapacitorCyclicvoltamogramsin0.1MNa2SO4
at5mV/sof(A)acompositeelectrodecomposedof80%MnO2,7.5%graphite,7.5%acetyleneblack,and5%Teflonand(B)a90%MnO2
and10%PVDF−HFPthinfilmelectrodesupportedonaPtfoil.Chem.Mater.,
2004,
16
,3184–3190electrodemass(μg)amount ofMnO2(moles)voltammetricchargea(C)/(C/g)calculatedcharge(C)bcoulombicefficiency(%)cspecificcapacitance(F/g)A5.0 ± 0.35.75 × 10-80.0056/12500.00551011380B10.0 ± 0.81.15 × 10-70.0106/11900.0111951320C15.0 ± 1.51.73 × 10-70.0148/11000.0166891230D20.0 ± 2.52.30 × 10-70.0156/8750.022270970E25.0 ± 3.82.88 × 10-70.0186/8350.027767930虽然比容量很高,但是仅有最外层的二氧化锰能够参与电化学反应和能量的存储。一般文献里面的高比容量都是精心设计的纳米结构,难以产业化。
Conducting-polymer-basedsupercapacitordevicesandelectrodesTypicalconductivitiesofvariousconductingpolymers.PolymerConductivity(Scm−1)ReferencePolyaniline0.1–5--Polypyrrole10–50--PEDOT300–500--Polythiophene300–400--Variousconductingpolymerstructures.(A)
Trans-poly(acetylene)(B)
cis-poly(acetylene)(C)poly(p-phenylene)(D)polyaniline(PAni)(E)poly(n-methylaniline)(PNMA)(F)polypyrrole(PPy)(G)polythiophene(PTh)(H)3-substitutedpolythiophene(I)poly(3,4-ethylenedioxythiophene)(PEDOT)(J)poly(3-(4-fluorophenyl)thiophene)(PFPT)(K)poly(cyclopenta[2,1-b;3,4-b′-dithiophen-4-one])(PcDT)(L)1-cyano-2-(2-[3,4-ethylenedioxylthienyl])-1-(2-thienyl)vinylene(PThCNVEDT).G.A.Snooketal.JournalofPowerSources196(2011)1–12Theoreticalandexperimentalspecificcapacitancesofconductingpolymers.ConductingpolymerMw(gmol−1)Dopan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4《不做“小马虎”》(教学设计) 2023-2024学年统编版道德与法治一年级下册
- 河北对外经贸职业学院《生物合成药物学》2023-2024学年第二学期期末试卷
- 广州东华职业学院《织物产品结构与工艺(二)》2023-2024学年第二学期期末试卷
- 郑州工程技术学院《国外文学》2023-2024学年第二学期期末试卷
- 河源广东河源紫金县专门学校驻校教官招聘7人笔试历年参考题库附带答案详解
- 新疆农业大学《工作分析》2023-2024学年第二学期期末试卷
- 梅河口康美职业技术学院《缅甸语阅读》2023-2024学年第二学期期末试卷
- 冻土共振柱试验机项目效益评估报告
- Unit 5 In the Park Lesson 2(教学设计)-2024-2025学年人教新起点版英语二年级上册
- 重庆城市科技学院《建筑结构与平法识图》2023-2024学年第二学期期末试卷
- 2024年湖南环境生物职业技术学院单招职业适应性测试题库及参考答案
- 专题06 压强计算(压强与浮力结合题)-上海市2024年中考复习资料汇编(培优专用)【解析版】
- 2024年辅警招聘考试试题库含完整答案(各地真题)
- 《工程建设标准强制性条文电力工程部分2023年版》
- 壶口瀑布公开课省公开课一等奖全国示范课微课金奖课件
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- 中医中药在罕见病中的应用
- 《起重机械安全评估规范》编制说明(征求意见稿)
- 人教版PEP五年级数学下册教案(全册 完整)
- 《陶瓷彩绘装饰工艺》课程标准
- 预防颈动脉斑块
评论
0/150
提交评论