电化学电容器介绍_第1页
电化学电容器介绍_第2页
电化学电容器介绍_第3页
电化学电容器介绍_第4页
电化学电容器介绍_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电化学电容器及其电极材料的进展介绍报告人:王宇学号:BA13014006Whatiscapacitors?Whatiselectrochemicalcapacitors(supercapacitors)?电容器(Capacitor)是两金属板之间存在绝缘介质的一种电路元件。其单位为法拉,符号为F。电容器利用二个导体之间的电场来储存能量,二导体所带的电荷大小相等,但符号相反。当电性相反的电荷分别在电容器的两端累积,电容器两端的电位差和电荷产生的电场开始增加。累积电荷越多,为抵抗电场所需要作的功就越大。储存在电容器的能量(国际单位制中,单位为焦耳)等于建立电容两端的电压和电场所需要的能量。电化学电容器(supercapacitor)与上述电容器不同的地方是:两金属板之间存在绝缘介质变成了浸没在电解液中具有电化学活性的材料。基本原理相同,都是在电极处累积电荷达到能量存储的目的。Quetal.JournalofPowerSources,74(1998)99–107油相与水相E=½CV2Aqueouselectrolytes,suchasacids(e.g.,H2SO4)andalkalis(e.g.,KOH)havetheadvantageofhighionicconductivity(upto∼1

S

cm−1),lowcostandwideacceptance.Ontheotherhand,theyhavetheinherentdisadvantageofarestrictedvoltagerangewitharelativelylowpositionvoltageof∼1.23

V.Non-aqueouselectrolytesofvarioustypeshavebeendevelopedthatallowtheuseofcelloperatingvoltages∼2.5

V.Non-aqueouselectrolytemixturessuchaspropylenecarbonateoracetonitrile,containingdissolvedquaternaryalkylammoniumsalts,havebeenemployedinmanycommercialsupercapacitors,particularlythosetargetinghigherenergyapplications.Theelectricalresistivityofnon-ueouselectrolytesis,however,atleastanorderofmagnitudehigherthanthatofaqueouselectrolytesandthereforetheresultingcapacitorsgenerallyhaveahigherinternalresistance.NatureMater.7,845-854(2008)Ifasupercapacitorisusedinanelectricvehicle,thespecificpowershowshowfastonecango,andthespecificenergyshowshowfaronecangoonasinglecharge.Timesshownarethetimeconstantsofthedevices,obtainedbydividingtheenergydensitybythepower.Electrochemicalcapacitorscurrentlyfillthegapbetweenbatteriesandconventionalsolidstateandelectrolyticcapacitors.能量比较图特点Batteries:HighenergydensityandlowpowerdensityenergystoragesystemsElectrochemicalcapacitors:HighpowerdensityandlowenergydensitySolarenergyWind

energyWaterenergy……Advantagesof

Electrochemicalcapacitors(EC):HighpowerdensityLonglifeexpectancyLongshelflifeWiderangeofoperatingtemperatures

(downto-40°C).

EnvironmentalfriendlinessSafetyChallengesfor

EC:

LowenergydensityHighself-dischargingrateThefirstpatentdescribingtheconceptofanECwasfiledin1957byBecker.However,notuntilthe1990sdidECtechnologybegintodrawsomeattention,inthefieldofhybridelectricvehicles.Example1)toimprovetheoverallefficiencyofthevehicle2)toreducelong-termcostsbyextendingthelifeofthebatteries3)toimprovetheaccelerationcapabilitiesofthevehicle4)toreduceshort-termcostsbyreplacingsomeofthebatteries.IEEETransactionsonIndustryApplications,44,108-114(2008)InternationalSymposiumonPowerElectronics,ElectricalDrives,AutomationandMotion,727-732(2008)Theadditionofsupercapacitorscanplishoneormoreofthefollowinggoals:EC的分类:1.Electrostaticsupercapacitors2.FaradaicsupercapacitorsElectrochemicaldouble-layercapacitors(EDLCs)areelectrochemicalcapacitorsthatstorethechargeelectrostaticallyusingreversibleadsorptionofionsoftheelectrolyteontoactivematerialsthatareelectrochemicallystableandhavehighaccessibleSSA.SomeECsusefast,reversibleredoxreactionsatthesurfaceofactivematerials,thusdefiningwhatiscalledthepseudo-capacitivebehaviour.大多是碳材料大多是金属氧化物以及导电聚合物InternationalJournalofHydrogenEnergy.34,4889-4899(2009)Principleofasingle-celldouble-layercapacitorandillustrationofthepotentialdropattheelectrode/electrolyteinterface.Electrochemicaldouble-layercapacitors(EDLCs)Carbonmaterialsareconsideredprospective

electrode

materialsforindustrialization.highconductivity,highsurface-arearange(∼1to>2000

m2

g−1),goodcorrosionresistance,hightemperaturestability,controlledporestructure,processabilityandcompatibilityincompositematerials,relativelylowcost.ElectrodematerialcharacteristicsforEDLC

Highsurfaceareaactivematerialsa,SEMimageofSWNT-foreststructuralcollapsefromasingledropofliquid.

b,Schematicdiagramofthecollapseofthealignedlow-densityas-grownforest(above)tothehighlydenselypackedSWNTsolid(below).

c,Overlaidpicturesillustratingthedecreaseinlateraldimensionsbefore(grey)andafter(black)collapse.Thedouble-endedarrowindicatesthetubealignmentdirection.Scalebar,1

cm.

d,Ramanspectraforas-grownforest(blue)andSWNTsolid(red).e,

f,SEMimagesoftheas-grownforest(e)andsolid(f).

g,Atomicforcemicroscopeimageofsolidsurface.Brunauer–Emmett–Teller(BET)surfaceareaforthesolid,asdeterminedfromnitrogenadsorptionisothermswas1,000

m2

g-1,almostthesamewithforest.Forforests,thetypicalmassdensitywas0.03

g

cm-3;Forsolid,0.55

g

cm-3NatureMaterials

5,987-994(2006)a,b,CyclicvoltammogramsoftheEDLCusingtheSWNTsolidsheet(red)andas-grownforest(black)aselectrodescomparingthecapacitanceperweight(a)andcapacitancepervolume(b).

c,ChangeinthecapacitancepervolumeusingtheSWNTsolidsheet(red)andas-grownforest(black).

d,SchematicmodelcomparingtheiondiffusionforactivatedcarbonandtheSWNTsolidmaterial.

e,CapacitanceversusdischargecurrentdensitycomparingSWNTsolid(red)andactivatedcarbon(blue)for0.1and0.5

mmelectrodethicknesses(dashedandsolidlines,respectively).

f,Potentialdropassociatedwithanincreaseininternalresistance(IRdrop)forSWNTsolid(red)andactivatedcarbon(blue)for0.1and0.5

mmelectrodethicknesses(dashedandsolidlines,respectively).CapacitanceoftheSWNTsolidEDLCwasestimatedas20

F

g-1

fromthedischargecurvesofcellschargedat2.5

Vforatwo-electrodecell,andcorrespondsto80

F

g-1

forathree-electrodecell.Withtetraethylammoniumtetrafluoroborate(Et4NBF4)/propylenecarbonateelectrolyte.Zhu

etal.,Science

332,

1537-1541(2008)GraphenehasatheoreticalSSAof2630m2/gActivationwithKOHofmicrowaveexfoliatedGO(MEGO)toachieveSSAvaluesupto3100m2/g.BMIMBF4/ANaselectrolyte.Usingthespecificcapacitancevalueof166F/g(fromthedischargecurvewithaconstantcurrentof5.7A/g)andworkingvoltageof3.5V,theenergydensityis~70Wh/kgforthea-MEGOinthecell.

Redox-basedelectrochemicalcapacitorsCathodematerials:withtheaverageworkingpotentialofabove0Vvs.SCEAnodematerials:withtheaverageworkingpotentialofbelow0Vvs.SCE.Qu

etal.,Adv.Mater.

23,

5574-5580(2011)Qu

etal.,Adv.Mater.

23,

5574-5580(2011)Hydrousrutheniumoxide(RuO2·xH2O)NTswereelectrodepositedontoAAO-coatedgraphite(10×10×3mm)orTisubstrates(10×10×0.5mm)Itcanbedescribedasafast,reversibleelectrontransfertogetherwithanelectro-adsorptionofprotonsonthesurfaceofRuO2NTs,accordingtoequation,whereRuoxidationstatescanchangefrom(ii)upto(iv):where0≤x≤2.RuO2NTsforSupercapacitorsTherectangle-likeshapeofalli−Ecurvesmeasuredatvariousscanratesin1.0MH2SO4

(Figure4A)fortheannealedRuO2·xH2ONTsrevealstheperfectelectrochemicalreversibilityoftheFaradaicredoxtransitionsontheseoxideNTs.Figure4(A)Cyclicvoltammogramsmeasuredat(1)1000,(2)750,(3)500,(4)250,and(5)100mVs-1,and(B)dependenceofthecapacitancelossonthescanrateofCVfrom10to1000mVs-1

foranannealedRuO2·xH2ONTarrayedelectrode(0.19±0.01mgcm-2).(C)Electrochemicalimpedancespectrameasuredatvariouspotentialswithpotentialamplitudeof10mV.(D)FrequencydependenceofspecificcapacitanceforanannealedRuO2·xH2ONTarrayedelectrode(0.21±0.01mgcm-2).Theelectrolyteforelectrochemicalanalysesis1.0MH2SO4.ChargeStorageMechanismofMnO2

ElectrodeUsedinAqueousElectrochemicalCapacitorCyclicvoltamogramsin0.1MNa2SO4

at5mV/sof(A)acompositeelectrodecomposedof80%MnO2,7.5%graphite,7.5%acetyleneblack,and5%Teflonand(B)a90%MnO2

and10%PVDF−HFPthinfilmelectrodesupportedonaPtfoil.Chem.Mater.,

2004,

16

,3184–3190electrodemass(μg)amount ofMnO2(moles)voltammetricchargea(C)/(C/g)calculatedcharge(C)bcoulombicefficiency(%)cspecificcapacitance(F/g)A5.0 ± 0.35.75 × 10-80.0056/12500.00551011380B10.0 ± 0.81.15 × 10-70.0106/11900.0111951320C15.0 ± 1.51.73 × 10-70.0148/11000.0166891230D20.0 ± 2.52.30 × 10-70.0156/8750.022270970E25.0 ± 3.82.88 × 10-70.0186/8350.027767930虽然比容量很高,但是仅有最外层的二氧化锰能够参与电化学反应和能量的存储。一般文献里面的高比容量都是精心设计的纳米结构,难以产业化。

Conducting-polymer-basedsupercapacitordevicesandelectrodesTypicalconductivitiesofvariousconductingpolymers.PolymerConductivity(Scm−1)ReferencePolyaniline0.1–5--Polypyrrole10–50--PEDOT300–500--Polythiophene300–400--Variousconductingpolymerstructures.(A)

Trans-poly(acetylene)(B)

cis-poly(acetylene)(C)poly(p-phenylene)(D)polyaniline(PAni)(E)poly(n-methylaniline)(PNMA)(F)polypyrrole(PPy)(G)polythiophene(PTh)(H)3-substitutedpolythiophene(I)poly(3,4-ethylenedioxythiophene)(PEDOT)(J)poly(3-(4-fluorophenyl)thiophene)(PFPT)(K)poly(cyclopenta[2,1-b;3,4-b′-dithiophen-4-one])(PcDT)(L)1-cyano-2-(2-[3,4-ethylenedioxylthienyl])-1-(2-thienyl)vinylene(PThCNVEDT).G.A.Snooketal.JournalofPowerSources196(2011)1–12Theoreticalandexperimentalspecificcapacitancesofconductingpolymers.ConductingpolymerMw(gmol−1)Dopan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论