版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
随机信号的时域统计分析信号的相关分析测试信号的分析与处理数字信号处理3/14/20231随机信号的时域统计分析随机信号:不能用确定的数学关系式来描述,不能预测其未来任何瞬时值,任何一次观测值只代表在其变动范围中可能产生的结果之一,但其值的变动服从统计规律。几个相关概念:1、样本函数xi(t)2、样本记录xi(t)t=0~T3、随机过程{xi(t)}={x1(t),x2(t),…,xi(t),…}随机信号的描述采用概率论与数理统计的方法一、概述3/14/20232(一)均值、方差和均方值1、均值表示信号的常值量的大小。2、方差描述随机信号的波动量的大小,它是相对于均值偏离值的平方的均值,即二、随机信号的主要统计特征3/14/20233(二)概率密度函数随机信号的概率密度函数是表示信号幅值落在指定区间内的概率。当样本函数的记录时间T趋于无穷大时,Tx/T的比值就是幅值落在区间内的概率,记为:概率密度函数提供了随机信号幅值分布的信息,是随机信号的主要特征参数之一定义幅值概率密度函数为:3/14/20235三、随机信号分类三个概念:统计特征参数、集合平均、时间平均分类:随机过程平稳随机过程非平稳随机过程各态历经随机过程3/14/20236信号的相关分析在测试工作中,有时需要就两个以上的信号研究其相互关系,因此我们引入一个很重要的概念——相关。信号的相关性反映了一个信号在不同时刻,或两个信号之间的线性关系或相似程度。对信号做相关分析在振动测试、雷达测距、声发射探伤、以及通信,甚至控制系统中都得到了广泛应用。例如:利用已知的发射端信号与接收端信号做相关分析,以确定接收端是否接收到了发射端发出的信号。一、概述3/14/20237(二)相关系数自相关系数的绝对值介于小于1,其绝对值越趋近于1,表明两变量线性相关程度越大;若为负值,则表明一变量随着另一变量的增加而减小;若趋近于零,则表明两变量之间是完全无关的,但可能存在着某种非线性的相关关系或者函数关系。自相关系数:3/14/20239(三)自相关函数基本性质1、自相关函数是偶函数。即Rxx(τ)=Rxx(-τ)2、τ
值不同,Rxx(τ)不同,当τ
=0时,Rxx(τ)的值最大。3/14/2023103、周期函数的自相关函数仍为同频率的周期函数若有一函数x(t)为周期函数,则x(t)=x(t+nT),其自相关函数为:正弦信号的自相关函数是同频率的余弦信号,且保留了幅值和频率信息,但丢失了相位信息(见教材P23例3)。由此:若信号中含有周期成分,其自相关函数也必定含有同频率的周期成分。此性质可用来鉴别随机信号中的周期成分。3/14/2023115、当τ∞时,x(t)与x(t+τ)之间不存在内在联系,彼此无关。即:6、如果信号是纯随机噪声,其自相关函数将随的增大快速衰减。
3/14/202313(四)自相关函数的物理意义1、表达了信号现在与时间坐标移动了τ时间后的信号之间的相似程度。2、建立了随机信号一个时刻的幅值与另一个时刻幅值之间的依赖关系。3、描述了在观测时间T内两个幅值乘积的集合平均。4、从自相关函数的图形可分析信号的构成性质,从噪声背景下提取有用信号。3/14/202314(五)自相关函数的工程应用自相关分析主要用来检测混淆在随机信号中的确定性信号。因为周期信号或任何确定性信号在所有时差τ值上都有自相关函数值,而随机信号在τ值足够大时其自相关函数趋于零。案例:机械加工表面粗糙度自相关分析
被测工件相关分析提取出回转误差等周期性的故障源。3/14/202315算法:令x(t)、y(t)二个信号之间产生时差τ,再相乘和积分,就可以得到τ时刻二个信号的相关性。
x(t)y(t)时延器
乘法器
y(t-τ)X(t)y(t-τ)积分器
Rxy(τ)*图例自相关函数:x(t)=y(t)3/14/202317三、互相关函数(一)互相关函数概念两个随机信号样本x(t)和y(t),y(t+τ)是y(t)时移τ后的样本,则,其互相关函数定义为:同样地,以有限长样本作互相关函数的估计:3/14/202318(二)互相关函数的基本性质1、互相关函数并非偶函数,也并非奇函数,而是:Rxy(τ)=Ryx(-τ)2、互相关函数不一定在τ
=0处为峰值,其峰值点偏离原点的距离反映了两个信号最大相关时的时间间隔τd。3、同频率的两个周期信号的互相关函数也是具有同频率的周期信号,而且保留了原信号的相位信息。(见P25例4)3/14/202319(三)互相关函数的应用工程上互相关函数被广泛应用于传播问题。案例1:地下输油管道漏损位置的探测tX1X2t3/14/202321案例2:光电信号互相关分析测速3/14/202322案例3:地震位置测量3/14/2023232、测试信号数字化处理的基本步骤
物理信号对象传感器电信号放大调制电信号A/D转换数字信号计算机显示D/A转换电信号控制物理信号3/14/2023253、数字信号处理的优势
1)用数学计算和计算机显示代替复杂的电路和机械结构3/14/202326一、信号的数字化(一)信号的采样
采样是将采样脉冲序列p(t)与信号x(t)相乘,取离散点x(nt)的值的过程。3/14/202329X(0),X(1),X(2),……,X(n)
3/14/202330每周期应该有多少采样点?最少2点:3/14/2023313/14/202332xs(t)由一系列冲激函数构成,每一个冲激函数的强度等于连续信号在该时刻的抽样值x(nTs)3/14/202333(二)采样过程的频谱及采样定理信号的采样可以通过采样周期为Ts,采样频率为fs=1/Ts的单位周期脉冲信号p(t)与连续信号x(t)相乘得到,我们关注三个问题:采样与频谱、混频现象、采样定理1、采样与频谱3/14/202334①信号x(t)与单位周期脉冲信号相乘后,其频谱发生了周期延拓,即X(f)分别延拓到1/Ts为中心的频谱。②频谱的幅度乘了一个因子1/Ts。3/14/2023352、混频现象模拟信号在时域中按时隔Ts离散化,在频域中按1/Ts周期化。采样间隔太小,需处理的数字序列很长,计算工作量猛增。3/14/2023363、采样定理很显然,采样间隔过大(采样频率过低)或采样间隔过小(采样频率过高)都不好。间隔过大,则平移距离
1/Ts过小那么移至各采样脉冲所在处的X(f)就会发生混叠。若要求不发生频率混叠,首先需要使被采样的模拟信号x(t)称为有限带宽信号。不满足此要求的信号,在采样之前使其先通过模拟低通滤波器滤去高频成分,使其成为带限信号,称为抗混叠滤波预处理。然后使得采样频率fs大于带限信号最高频率fh的两倍,即:fs=1/Ts>2fh,把该频谱通过一个中心频率为零,带宽为±(fs/2)的理想低通滤波器就可能准确恢复x(t)。这就是采样定理。3/14/202337
需注意,满足采样定理,只保证不发生频率混叠,而不能保证此时的采样信号能真实地反映原信号x(t)。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。3/14/202338(三)量化和量化误差将采样所得信号的电平幅值分为一组有限个离散电平,每个量化电平对应一个二进制数码,使离散信号进一步变成数字信号,称为量化。当采样信号的实际电平落在两个相邻量化电平之间时,就要舍入到相近的一个量化电平上,该量化电平与实际电平的差值称为量化误差ε(n)。A/D转换器的位数越高,则量化误差越小,但我们需要依需求的精度而定。位数越高,则成本显著增加,转换速率也会明显下降。3/14/2023394位A/D:XXXXX(1)0101X(2)0011X(3)0000信号的6等分量化过程3/14/202340
A/D转换器量化时的技术指标
(3)模拟信号的输入范围;如,5V,+/-5V,10V,+/-10V等。
(1)分辨率;
用输出二进制数码的位数表示。位数越多,量化误差越小,分辨力越高。常用有8位、10位、12位、16位等。
(2)转换速度;指完成一次转换所用的时间,如:1ms(1KHz);10us(100kHz)3/14/202341(四)信号截断、能量泄漏及窗函数1、截断与泄漏数字处理需要截断过长的信号时间历程,而只对有限长信号进行处理。信号乘以有限宽的窗函数就实现了截断。窗函数就是在模数转换过程中或数据处理过程中对时域信号取样时所采用的截断函数。图示为时域余弦函数被矩形窗函数截断后其时频域变化情况。由于信号在时域上被截断而在频域上出现附加频率的现象称为泄漏。3/14/2023422、几种常用的窗函数简介由窗函数的频谱可见,在-2π/τ<ω<2π/τ之间的部分称为主瓣,其余两旁的部分,即附加频率分量称为旁瓣。当窗宽τ增大时,主瓣和旁瓣的宽度都变窄,主瓣高度恒等于窗宽。τ→∞时,G(ω)→δ(ω),那么无限加大窗宽可实现无泄漏,但信号无截断则无意义。因此,对时间窗函数的要求是:其频谱的主瓣尽量窄,以提高频率分辨率;旁瓣要尽量低,以减少泄漏。但往往鱼和熊掌不可兼得。需根据不同需要进行选择。3/14/202343常用的窗函数之一:矩形窗函数矩形窗使用最普遍,习惯上信号的不加窗处理就相当于使用了窗宽无限大的矩形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年模具行业节能减排技术改造合同
- 二零二五版返租型商业地产租赁合同范本(商业综合体)13篇
- 2025年度农民公寓房屋买卖售后服务保障合同范本
- 2025年度光伏发电项目融资担保合同
- 二零二五年度南京个人二手房买卖合同示范文本
- 2025年度智能设备研发与技术支持服务合同范本
- 2025版高档实木门批发安装一体化服务合同4篇
- 二零二五版农业观光旅游土地承包经营权合作合同4篇
- 2025年度旅游纪念品设计与生产合同6篇
- 二零二五年度电梯设备维修配件销售合同3篇
- 2025年春新人教版物理八年级下册课件 第十章 浮力 第4节 跨学科实践:制作微型密度计
- 2024-2025学年人教版数学六年级上册 期末综合试卷(含答案)
- 收养能力评分表
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
- 《社区康复》课件-第八章 视力障碍患者的社区康复实践
- 幼儿园公开课:大班健康《国王生病了》课件
- 小学六年级说明文阅读题与答案大全
- 人教pep小学六年级上册英语阅读理解练习题大全含答案
- 国寿增员长廊讲解学习及演练课件
- 同等学力申硕英语考试高频词汇速记汇总
评论
0/150
提交评论