第十一章-半导体光电子器件讲解_第1页
第十一章-半导体光电子器件讲解_第2页
第十一章-半导体光电子器件讲解_第3页
第十一章-半导体光电子器件讲解_第4页
第十一章-半导体光电子器件讲解_第5页
已阅读5页,还剩111页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一章半导体光电子器件原子核电子高能级低能级孤立原子的能级围绕原子核旋转的电子能量不能任意取值,只能取特定的离散值(离散轨道),这种现象称为电子能量的量子化。电子优先抢占低能级半导体的能带在大量原子相互靠近形成半导体晶体时,由于半导体晶体内部电子的共有化运动,使孤立原子中离散能级变成能带。在晶体物理中,通常把这种形成共价键的价电子所占据的能带称为价带,而把价带上面邻近的空带(自由电子占据的能带)称为导带。N个原子构成晶体时的能级分裂N=4N=9当N很大时能级分裂成近似连续的能带满带:各个能级都被电子填满的能带禁带:两个能带之间的区域——其宽度直接决定导电性能带的分类空带:所有能级都没有电子填充的能带

价带:由最外层价电子能级分裂后形成的能带未被电子占满的价带称为导带禁带的宽度称为带隙导体、绝缘体和半导体导体:(导)价带电子绝缘体:无价带电子禁带太宽半导体:价带充满电子禁带较窄外界能量激励满带电子激励成为导带电子满带留下空穴半导体的能带结构在图中,半导体内部自由运动的电子(简称自由电子)所填充的能带称为导带;价电子所填充的能带称为价带;导带和价带之间不允许电子填充,所以称为禁带,其宽度称为禁带宽度,用Eg表示,单位为电子伏特(eV)。直接带隙与间接带隙Ef:Fermi能级。它与物质特性有关,它并不是物质的实体能级,而是描述电子能量分布所用的假想能级。费米能级

A.电子占据能量为E的状态的几率对一个电子而言,它具有的能量时大时小,处在经常变化中。但是对于大量电子群体,在热平衡状态下,电子能量大小服从Fermi-Dirac统计分布规律。

费米分布函数变化曲线B.热平衡状态下的系统导带和价带具有统一的Fermi能级。

C.准热平衡状态

在非热平衡时,导带和价带之间不存在统一的Fermi能级。然而,如果向能带注入的载流子速率不太大时,则每个能带中的载流子仍处在准平衡状态,可以用各自的Fermi能级来描述导带和价带的载流子分布,亦称准Fermi能级。

:导带中的Fermi能级。导带中能级被电子占据的几率。

:价带中的Fermi能级。导带中能级被电子占据的几率。

本征半导体N型半导体P型半导体

半导体的能带和电子分布

PN结的能带和电子分布

根据量子统计理论,在热平衡状态下,能量为E的能级被电子占据的概率为费米分布

式中,k为波兹曼常数,T为热力学温度。Ef称为费米能级,用来描述半导体中各能级被电子占据的状态。在费米能级,被电子占据和空穴占据的概率相同。

一般状态下,本征半导体的电子和空穴是成对出现的,用Ef位于禁带中央来表示,见图(a)。在本征半导体中掺入施主杂质,称为N型半导体,见图(b)。在本征半导体中,掺入受主杂质,称为P型半导体,见图(c)。

硅的晶格结构硅的晶格结构(平面图)本征半导体材料Si电子和空穴是成对出现的受热时,Si电子受到热激励跃迁到导带,导致电子和空穴成对出现。此时外加电场,发生电子/空穴移动导电。导带EC价带EV电子跃迁带隙Eg

=1.1eV电子态数量空穴态数量电子浓度分布空穴浓度分布空穴电子本征半导体的能带图电子向导带跃迁相当于空穴向价带反向跃迁Ef-电子或空隙的浓度为:其中为材料的特征常数T为绝对温度kB

为玻耳兹曼常数,h为普朗克常数me

电子的有效质量mh

空穴的有效质量Eg带隙能量本征载流子浓度例:在300K时,GaAs的电子静止质量为m=9.11×10-31kg,

me=0.068m=6.19×10-32kg

mh=0.56m=5.1×10-31kg

Eg=1.42eV

可根据上式得到本征载流子浓度为2.62×1012m-3非本征半导体材料:n型第V族元素(如磷P,砷As,锑Sb)掺入Si晶体后,产生的多余电子受到的束缚很弱,只要很少的能量DED(0.04~0.05eV)就能让它挣脱束缚成为自由电子。这个电离过程称为杂质电离。As除了用4个价电子和周围的Si建立共价键之外,还剩余一个电子As+导带EC价带EV施主能级电子能量电子浓度分布空穴浓度分布施主能级施主杂质电离使导带电子浓度增加N型材料,施主能级第V族元素称为施主杂质,被它束缚住的多余电子所处的能级称为施主能级。由于施主能级上的电子吸收少量的能量DED后可以跃迁到导带,因此施主能级位于离导带很近的禁带。Ef非本征半导体材料:p型由于B只有3个价电子,因此B和周围4个Si的共价键还少1个电子B容易抢夺周围Si原子的电子成为负离子并产生多余空穴B–第III族元素(如铟In,镓Ga,铝Al)掺入Si晶体后,产生多余的空穴,它们只受到微弱的束缚,只需要很少的能量DEA<Eg

就可以让多余孔穴自由导电。导带EC价带EV受主能级电子能量电子浓度分布空穴浓度分布受主能级受主能级电离使导带空穴浓度增加P型材料,受主能级第III族元素容易抢夺Si的电子而被称为受主杂质。被它束缚的空穴所处的能级称为受主能级EA。当空穴获得较小的能量DEA之后就能摆脱束缚,反向跃迁到价带成为导电空穴。因此,受主能级位于靠近价带EV的禁带中。Ef

PN结耗尽层(a)P-N结内载流子运动;

P区PN结空间电荷区N区内部电场

扩散

漂移

在P型和N型半导体组成的PN结界面上,由于存在多数载流子(电子或空穴)的梯度,因而产生扩散运动,形成内部电场,见图(a)。

(b)零偏压时P-N结的能带倾斜图;势垒能量EpcP区EncEfEpvN区Env

内部电场产生与扩散相反方向的漂移运动,直到P区和N区的Ef相同,两种运动处于平衡状态为止,结果能带发生倾斜,见图4.5(b)。耗尽区扩散电子pn结内建电场PN结:---+++U电势pnEf1.浓度的差别导致载流子的扩散运动2.内建电场的驱动导致载流子做反向漂移运动P-N结施加反向电压VCC当PN结两端加上反向偏置电压时,耗尽区加宽,势垒加强。(a)反向偏压使耗尽区加宽少数载流子漂移U扩散运动被抑制只存在少数载流子的漂移运动P-N结施加正向电压VCC当PN结两端加上正向偏置电压时,产生与内部电场相反方向的外加电场,耗尽区变窄,势垒降低。使N区的电子向P区运动,P区的空穴向N区运动。少数载流子与多数载流子复合,产生光辐射。(b)正向偏压使耗尽区变窄耗尽区变窄Upnpn扩散>漂移hfhfEfEpcEpfEpvEncnEnv电子,空穴内部电场外加电场(c)正向偏压下P-N结能带图

在PN结上施加正向电压,产生与内部电场相反方向的外加电场,结果能带倾斜减小,扩散增强。电子运动方向与电场方向相反,便使N区的电子向P区运动,P区的空穴向N区运动,最后在PN结形成一个特殊的增益区。增益区的导带主要是电子,价带主要是空穴,结果获得粒子数反转分布,见图4.5(c)。外加电场注入载流子粒子数反转载流子复合发光电致发光正向偏压使pn节形成一个增益区:-导带主要是电子,价带主要是空穴,实现了粒子数反转-大量的导带电子和价带的空穴复合,产生自发辐射光pn外加正偏压注入载流子粒子数反转载流子复合发光hv光电效应半导体材料的光电效应是指如下这种情况:光照射到半导体的P-N结上,若光子能量足够大,则半导体材料中价带的电子吸收光子的能量,从价带越过禁带到达导带,在导带中出现光电子,在价带中出现光空穴,即光电子—空穴对,又称光生载流子。当光照射在某种材料制成的半导体光电二极管上时,若有光电子—空穴对产生,显然必须满足如下关系,即λc称为截止波长,fc称为截止频率。存在的问题:增益区太厚(1~10mm),很难把载流子约束在相对小的区域,无法形成较高的载流子密度无法对产生的光进行有效约束同质pn结:两边采用相同的半导体材料进行不同的掺杂构成的pn结特点:-同质结两边具有相同的带隙结构和光学性能-pn结区的完全由载流子的扩散形成pn同质pn结

折射率电子能量有源区注入电子电子势垒电子-空穴复合注入空穴空穴势垒波导区异质结:为提高辐射功率,需要对载流子和辐射光产生有效约束1.不连续的带隙结构2.折射率不连续分布---++典型的GaAlAs双异质结不连续的带隙结构加强对载流子的束缚不连续分布的折射率加强对产生光子的约束三种跃迁:

自发发射、受激吸收和受激发射hE2E1自发发射跃迁E2E1受激吸收跃迁hhE2E1受激发射跃迁hh受激发射的光子与原光子具有相同的波长、相位和传播方向自发辐射发射光子的频率自发辐射的特点如下:①这个过程是在没有外界作用的条件下自发产生的,是自发跃迁。②辐射光子的频率亦不同,频率范围很宽。③电子的发射方向和相位也是各不相同的,是非相干光。受激吸收物质在外来光子的激发下,低能级上的电子吸收了外来光子的能量,而跃迁到高能级上,这个过程叫做受激吸收。受激吸收的特点如下。①这个过程必须在外来光子的激发下才会产生,因此是受激跃迁。②外来光子的能量要等于电子跃迁的能级之差。③受激跃迁的过程不是放出能量,而是消耗外来光能。受激辐射处于高能级E2的电子,当受到外来光子的激发而跃迁到低能级E1时,放出一个能量为hf的光子。由于这个过程是在外来光子的激发下产生的,因此叫做受激辐射。受激辐射的特点如下。①外来光子的能量等于跃迁的能级之差。②受激过程中发射出来的光子与外来光子不仅频率相同,而且相位、偏振方向和传播方向都相同,因此称它们是全同光子。③这个过程可以使光得到放大。

受激辐射光的频率、相位、偏振态和传播方向与入射光相同,这种光称为相干光。

自发辐射光是由大量不同激发态的电子自发跃迁产生的,其频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光称为非相干光。物体成为发光体需要光辐射>光吸收激光器的工作原理激光器是指能够产生激光的自激振荡器。要使得光产生振荡,必须先使光得到放大,而产生光放大的前提,由前面的讨论可知,是物质中的受激辐射必须大于受激吸收。受激辐射是产生激光的关键。粒子数反转分布与光放大之间的关系在热平衡条件下,物质不可能有光放大作用要想物质能够产生光的放大,就必须使受激辐射作用大于受激吸收作用,也就是必须使N2>N1。这种粒子数一反常态的分布,称为粒子数反转分布。粒子数反转分布状态是使物质产生光放大的必要条件。将处于粒子数反转分布状态的物质称为增益物质或激活物质。粒子数反转分布状态

1.粒子数正常分布状态

设在单位物质中,处于低能级E1和处于高能级E2(E2>E1)的电子数分别为N1和N2。当系统处于热平衡状态时,存在下面的分布式中,k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温度。由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。这是因为电子总是首先占据低能量的轨道。

受激吸收和受激辐射的速率分别比例于N1和N2,且比例系数(吸收和辐射的概率)相等。如果N1>N2,即受激吸收大于受激辐射。当光通过这种物质时,光强按指数衰减,这种物质称为吸收物质。如果N2>N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用,这种物质称为激活物质。

N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称为粒子(电子)数反转分布。2.粒子数反转分布状态 为了使物质发光,就必须使其内部的自发辐射和/或受激辐射几率大于受激吸收的几率。 有多种方法可以实现能级之间的粒子数反转分布状态,这些方法包括光激励方法、电激励方法等。激光器的基本组成激光振荡器必须包括以下三个部分:能够产生激光的工作物质,能够使工作物质处于粒子数反转分布状态的泵浦源,能够完成频率选择及反馈作用的光学谐振腔。光学谐振腔1.将工作物质置于光学谐振腔(F-P腔)2.光的产生及方向选择

1)少数载流子的自发辐射产生光子

2)偏离轴向的光子产生后穿出有源区,得不到放大

3)轴向传播的光子引发受激辐射,产生大量相干光子3.通过来回反射,特定波长的光最终得到放大,并被输出法布里-珀罗(F-P)谐振腔100%90%受激发射和受激吸收受激发射----能量等于导带和价带能级差的光所激发而发出与之同频率、同相位的光;受激吸收----当晶体中有光场存在时,处在低能带某能级上的电子在入射光场的作用下,吸收一个光子而跃迁到高能带某能级上。在这个过程中能量保持守恒。受激吸收的概率与受激发射的概率相同。当有入射光场存在时,受激吸收过程与受激发射过程同时发生,哪个过程是主要的,取决于电子密度在两个能带上的分布。若高能带上电子密度高于低能带上的电子密度,则受激发射是主要的,反之受激吸收是主要的。激光器工作在正向偏置下,当注入正向电流时,高能带中的电子密度增加,这些电子自发地由高能带跃迁到低能带发出光子,形成激光器中初始的光场。在这些光场作用下,受激发射和受激吸收过程同时发生,受激发射和受激吸收发生的概率相同。LD发射激光的

首要条件---粒子数反转另一个条件是半导体激光器中必须存在光学谐振腔,并在谐振腔里建立起稳定的振荡。有源区里实现了粒子数反转后,受激发射占据了主导地位,但是,激光器初始的光场来源于导带和价带的自发辐射,频谱较宽,方向也杂乱无章。为了得到单色性和方向性好的激光输出,必须构成光学谐振腔。LD发射激光的

第二个条件---光学谐振腔法布里-珀罗(Fabry-Perot)光学谐振器镀有反射镜面的光学谐振腔只有在特定的频率内能够储存能量,这种谐振腔就叫做法布里-珀罗(Fabry-Perot)光学谐振器。它把光束闭锁在腔体内,使之来回反馈。当谐振腔内的前向和后向光波发生相干时,就保持振荡,形成和腔体端面平行的等相面驻波。此时的增益就是激光器的阈值增益,达到该增益所要求的注入电流称作阈值电流。光在谐振腔里建立稳定振荡的条件

与电谐振一样,光也有谐振。要使光在谐振腔里建立起稳定的振荡,必须满足一定的相位条件和阈值条件。相位条件---使谐振腔内的前向和后向光波发生相干;阈值条件---使腔内获得的光功率正好与腔内损耗相抵消。只有谐振腔里的光增益和损耗值保持相等,并且谐振腔内的前向和后向光波发生相干时,才能在谐振腔的两个端面输出谱线很窄的相干光束。光在法布里珀罗(F-P)

谐振腔中的干涉激光器起振的相位条件-----

使谐振腔内的前向和后向光波发生干涉多纵模(多频)激光器

---谐振腔长度L比波长大很多激光器起振的阈值条件受激发射使腔体得到的增益=腔体损耗F-P光腔谐振器衰减倍数与

放大倍数

必须相等半导体激光器的增益频谱g()相当宽(约10THz),在F-P谐振腔内同时存在着许多纵模,但只有接近增益峰的纵模变成主模。在理想条件下,其它纵模不应该达到阈值,因为它们的增益总是比主模小。实际上,增益差相当小,主模两边相邻的一、二个模与主模一起携带着激光器的大部分功率。这种激光器就称作多模半导体激光器。激光器增益谱和损耗曲线

阈值增益为两曲线相交时的增益值激光器

起振阈值条件

的简化描述例题激光器光腔越长,模式越多小结

---光在谐振腔里建立稳定振荡的条件在半导体激光器里,由两个起反射镜作用的晶体解理面构成的法布里珀罗谐振腔,它把光束闭锁在腔体内,使之来回反馈。当受激发射使腔体得到的放大增益等于腔体损耗时(阈值条件),并且谐振腔内的前向和后向光波发生相干时(相干条件),就保持振荡,形成等相面和腔体端面平行的驻波,然后穿透谐振腔的两个端面,输出谱线很窄的相干光束。LD的工作原理

同质结构只有一个简单P-N结,且P区和N区都是同一物质的半导体激光器。该激光器阈值电流密度太大,工作时发热非常严重,只能在低温环境、脉冲状态下工作。为了提高激光器的功率和效率,降低同质结激光器的阈值电流,人们研究出了异质结的半导体激光器。同质结构LD异质结半导体激光器为了提高LD的功率和效率,降低同质结LD的阈值电流,人们研究出了异质结LD所谓“异质结”,就是由两种不同材料(例如GaAs和GaAlAs)构成的P-N结。在双异质结构中,有三种材料,有源区被禁带宽度大、折射率较低的介质材料包围。这种结构形成了一个像光纤波导的折射率分布,限制了光波向外围的泄漏,使阈值电流降低,发热现象减轻,可在室温状态下连续工作。为进一步降低阈值电流,提高发光效率,提高与光纤的耦合效率,常常使有源区尺寸尽量减小,通常w=10m,d=0.2m,L=100~400m同质结、双异质结LD能级图及光子密度分布的比较分布反馈激光器(DFB)DFB激光器是单纵模(SLM)LD,即频谱特性只有一个纵模(谱线)的LD。SLMLD与法布里-珀罗LD相比,它的谐振腔损耗与模式有关,即对不同的纵模具有不同的损耗。这是通过改进结构设计,使DFBLD内部具有一个对波长有选择性的衍射光栅,从而使只有满足布拉格波长条件的光波才能建立起振荡。由这种激光器的增益和损耗曲线图可见,增益曲线首先和模式具有最小损耗的曲线接触的模开始起振,并且变成主模。其它相邻模式由于其损耗较大,不能达到阈值,因而也不会从自发辐射中建立起振荡。SLMLD与法布里-珀罗LD相比,它的谐振腔损耗与模式有关,即对不同的纵模具有不同的损耗单纵模DFB半导体激光器

增益和损耗曲线DFBLD的分类分布反馈激光器

DFB:DistributedFeedBack分布布拉格反射激光器

DBR:DistributedBraggReflectorDFBLD的谐振腔损耗与模式有关,即对不同的纵模具有不同的损耗。这是通过改进结构设计,使DFBLD内部具有一个对波长有选择性的衍射光栅,从而使只有满足布拉格波长条件的光波才能建立起振荡。DFBLD结构及其原理DBRLD结构及其原理DBR激光器除有源区外,还在紧靠其右側增加了一段分布式布拉格反射器,它起着衍射光栅的作用。DBR激光器的输出是反射光相长干涉的结果。只有当波长等于两倍光栅间距时,反射波才相互加强,发生相长干涉。例如当部分反射波A和B具有路程差2时,它们才发生相长干涉。可调谐DBR激光器二段式三段式BraggSection:大范围调节PhaseSection:精细调节调谐范围:~10nm取样光栅可调谐DBR激光器工作原理:结构:调谐范围:~100nm外腔DBR激光器:线宽几十KHz光纤式外腔激光器:线宽~50KHz垂直腔表面发射激光器垂直腔表面发射激光器(VCSEL,VerticalCavitySurfaceEmittingLaser)顾名思义,它的光发射方向与腔体垂直,而不是像普通激光器那样,与腔体平行。这种激光器的光腔轴线与注入电流方向相同。VCSEL激光器示意图量子阱器件很薄的GaAs有源层夹在两层很宽的AlGaAs半导体材料中,所以它是一种异质结器件。在这种激光器中,有源层的厚度d很薄,导带中的禁带势能把电子封闭在x方向上的一维势能阱内,但是在y和z方向是自由的。这种封闭呈现量子效应,导致能带量化分成离散值。这种状态密度的变化,改变了自发辐射和受激发射的速率。量子阱半导体激光器有源层厚度仅是10nm,约为异质结器件的1/10,所以注入电流的微小变化就可以引起输出激光的大幅度变化。量子阱(QW)LD量子阱LD示意图自发辐射---LED工作原理当电子返回低能级时,它们各自独立地分别发射一个一个的光子。因此,这些光波可以有不同的相位和不同的偏振方向,它们可以向各自方向传播。同时,高能带上的电子可能处于不同的能级,它们自发辐射到低能带的不同能级上,因而使发射光子的能量有一定的差别,使这些光波的波长并不完全一样。因此,自发辐射的光是一种非相干光。面发光二极管优点:LED到光纤的耦合效率高P(q)=P0cosq载流子注入25mm5mm边发光二极管优点:与面发光LED比,光出射方向性好缺点:需要较大的驱动电流、发光功率低载流子注入50~70mm100~150mm30º120º面发光二极管与光纤的透镜耦合半导体光放大器对于半导体光放大器(SOA,SemiconductorOpticalAmplifiers)的研究,早在1962年发明半导体激光器不久就已开始了。然而,只有在上世纪80年代,在认识到它将在光波系统中具有广泛应用前景的驱使下,才对SOA进行了广泛的研究和开发。半导体光放大器的机理半导体光放大器的机理与激光器的相同,即通过受激发射放大入射光信号。光放大器只是一个没有反馈的激光器,其核心是当放大器被光或电泵浦时,使粒子数反转获得光增益。该增益通常不仅与入射信号的频率(或波长)有关,而且与放大器内任一点的局部光强有关,该频率和光强与光增益的关系又取决于放大器介质。行波光放大器是一个没有反馈的激光器。其核心是当放大器被光或电泵浦时,使粒子数反转获得光增益。行波半导体光放大器半导体激光器由于在解理面存在反射,当偏流低于阈值时是放大器。减小腔体界面反射,可使激光器变为放大器。这种放大器就称为F-P放大器。F-PSOA的结构和原理角度解理面或有源区倾斜结构。在解理面处的反射光束,因角度解理面的缘故已与前向光束分开。在大多数情况下,使用抗反射膜和有源区倾斜,可以使反射率小于<0.1%)减小反射率的方法有源区端面和解理面之间插入透明窗口区。光束在到达半导体和空气界面前,在该窗口区已发散,经界面反射的光束进一步发散,只有极小部分光耦合进薄的有源层。减小反射率的方法附录资料:不需要的可以自行删除日常设备点检与润滑点检的定义:为了维持生产设备原有的机能、确保设备和生产的顺利进行,满足客户的要求,按照设备的特性,通过人的“五感”和简单的工具、仪器,对设备的规定部位(点),按照预先设定的技术标准和观察周期,对该点进行精心的、逐点的周密检查,查找有无异状的隐患和劣化,使设备的隐患和劣化能够得到“早期发现、早期预防、早期修复的效果;2.点检与传统设备检查的区别(1)点检管理的特点设备点检,完全改变了设备检查的业务机构,改变了设备传统性检查的业务层次和业务流程,创造了基础管理的新形势,点检管理与传统的设备检查形式的不同之处做如下所述:1)体现了设备管理思想的更新,现代化的技术装备担负着社会大生产的重要使命,生产的产量、质量和经济效益将完全借助与生产设备来实现,往往一个小的故障,将会导致自动化设备的全线停产,其损失之大不可估计;因此,实行设备点检的主要目的,其实就是实现针对性维修;2)达到以管为主,全员参加管理的目的。3)实现了维修的最佳化目标;(通过点检,将设备故障消灭在萌芽状态)4)成为了标准化的设备基础管理作业方法;(2)传统设备检查的几种形式1)事后检查;设备在发生突发性故障以后,为恢复其故障部位的工作性能,以决定合理的修复方案和确定具体的内容进行的对应性检查;2)巡回检查;按照预先设定的检查部位和主要内容实行粗劣的巡视工作;3)计划检查;根据预先设定的周期和检查项目对设备进行检查或对部件进行解体检查;4)特殊性检查;零部件的品质、精度等5)法定检查;压力容器、起重设备等(3)点检与传统设备检查的区别;设备点检完全区别于传统的设备检查,他使隐患和异常都能在故障发生前得到前当得处理,做到既经济,又正确,因此,设备点检,其实就是预防性的主动的设备检查;另外“点检”是一种管理制度,而传统的设备检查仅是一种进行检查的方法。(4)如何点检?按照全员设备管理的要求,操作人员必须参与设备的维修活动,其活动范围及内容,与管辖本区域设备的点检员以协议的形式确定。因此,生产方在进行生产操作、检查的的同时,要进行设备的状态检查。日常点检内容:利用“五感”点检:依靠人的五官,对运转中的设备进行良否。通常对温度、压力、流量、振动、异音、动作状态、松动、龟裂、异常及电器线路的损坏、熔丝熔断、异味、泄漏、腐蚀等内容的点检。边检查边清扫:清除在生产运行过程中产生的废料(液),防止被掩埋了的设备性能劣化或损坏,此项工作应在生产巡检时及时进行,按程序及时处理劣化的设备,防止故障的扩大。做好紧固与调整:在五官点检过程中,如已发现松动和变化时,在确认可以实施恢复和力所能及的前提下,应该给予紧固和调整,并记录在案,及时的报告和传递信息。日常点检的方法和技巧点检表的确认:按设定的日常点检表逐项检查,逐项确认;点检结果的处理:点检结果,按照固定的符号记入日常点检表内,在交接班时交代清楚并向上级汇报,对发现的异常情况处理完毕,则要把处理过程、结果立即记入作业日志内;对正在观察、未处理结束的项目,必须连续记入符号,不能在未说明情况下自行取消记号,每班的点检结果,生产班组长、工段长都要认真确认、签字;不同要求的三种点检:根据不同岗位,不同要求,一般每个作业班,都要进行三种点检:静态点检:停机点检,要求要做到逐项逐点进行;动态点检:不停机点检,要求要做到逐项逐点进行;重点点检:随机进行,重点部位认真检查;2)良否点检在使用“五官点检法”,需要判别检查点良否的知识如下:振动:人体对振动的感觉极限,一般在适当的转速下,振幅在5微米时,就不容易感觉到。当一台19~90千瓦、3000r/min交流电机,安装在牢固的基础上,其单振幅允许在50微米以下。用手判别振动良否,可以用一只铅笔,笔尖放在振动体上,如果垂直放置的铅笔,发生激烈的上下跳动,而且向前移动时,就有超值的可能,需要用专用的“振动仪”测定振动值。温度:使用温度计在设备点检过程中,往往采用手指触摸发热体来判别温升值是否属于正常,用手指触摸判别温度的技巧是:用食指和中指放在被测的物体上,根据手指按放以后,人能忍受时间的长短,来大致判断物体的温度:具体参数如下,具体运用过程要考虑到人的皮肤质感,季节的不同:设备温度(摄氏度)触摸忍受时间(秒)设备温度(摄氏度)触摸忍受时间(秒)5060以上70253约30751.55510~12801605850.5653松动知识:用目视观看螺栓是否松动,一般在紧固螺杆上总沾有油灰,在存在松动螺栓上的油灰、形态有别于松动的螺栓,往往会出现新色、脱落的痕迹;用手锤敲击被检查的螺栓,若敲击声出现低沉沙哑的情况,同时观察螺栓周围所积油灰出现崩落的现象,基本上能判断出是否存在松动现象,对存在怀疑的螺栓用扳手紧固确认;最好在紧固螺栓时,用有色笔在螺栓和固定座之间划一道直线,再次点检时,若发现直线对不准,说明螺栓已经松动;声音知识:对传动设备是否存在缺油、断油、精度损失,可以用侧听声音的办法来判别其状态,常用的是“听音棒”,判断的正确取决于各人的经验。轴承:轴承的正常转动声音是均匀、圆滑的转动声,若出现周期性的金属碰撞声,则预示着轴承的滚道、保持架有异常,当出现高频声,则往往是少油、缺油现象,结合温升进行综合判断。对电动机的磁声判别:正常的磁声是连续的、轻微的、均匀的沙沙响声,有异物进入定转子的间隙或偏心时,这种连续声被破坏,不在出现;听声时,一定要集中思想,脑子要专心捕捉特定频率的声音,这样当其它频率的声音进入耳中时才会被滤掉。味觉知识:通常不太常用“尝”,因要进入口中需要特别谨慎,除非在特殊的场合,如电化学,急需鉴别酸性、碱性时,在确保对身体无害时,方可实施。引起设备故障原因分析1)造成设备性能劣化的原因;a:使用原因:设备的负荷运行造成劣化,但运行条件、操作方法的不同造成劣化程度不同;b:自然原因:潮湿生锈,天长日久的自然磨损、变形,时效老化等;C:灾害原因:天灾、狂风暴雨、地震等等;上述的原因引起设备的结果就出现了由于磨损、腐蚀等的减损,由于冲击、疲劳等的破坏,由于原料黏附灰尘引起的污损等现象,直至设备原有性能不能充分发挥,这就叫做设备性能劣化;2)机能劣化:a:转动和滑动部分出现机能劣化:磨损:由于运动摩擦引起接触面的磨损;如齿轮、轴承、轴套等;损坏:由于磨损或受力作用(弯曲、剪切)而断裂等;旋转不好:转动不灵活、滑动面粗糙等造成运动不灵活;操作不良:操作不正确或不按操作规程操作设备,或误操作而造成故障;异声:由于润滑不良或异物落入造成转动部位发生异声;振动:转动或滑动部位各种异常振动;漏油:润滑部位出现泄漏;b:固定部分机能劣化现象和原因:松弛脱落:连接部位螺钉出现松弛和脱落;变形断开:结构或构件变形或切断、折损等现象;腐蚀、龟裂、受腐部位或构件龟裂;c:电器部分劣化现象和原因:电器烧损、绝缘不良等;线路接点的短路或断路;电器整流不良;电参数的漂移;设备出现劣化,原因较多,除了上述的原因,还可能有工艺熔损、机件或其它部分出现剥落或破断造成设备故障;(3)上述原因从设备本体质量、维修质量、点检质量和操作保养等方面来分析,这些原因又可归纳为以下四个方面:1)设备本身原因:设备本体素质不高,设计不合理,机件强度不够,形状结构不良,使用材料不当,零部件性能低下,集体刚性欠佳造成断裂、疲劳和蠕变等现象。2)日常维护的原因:点检、维护质量不高,污垢异物混入机内,设备润滑不良。紧固不良、绝缘接触不良,造成机件性能低下,机件配合松动,短路、得不到及时改善和调整等现象。3)修理质量的原因:维修质量低劣,修后设备安装不好,零配件配合不良,装配粗糙,组装精度不高,选择配合不合要求,造成偏心,中心失常、振动、平衡不佳等现象;4)操作及其它原因:操作水平低、操作保养质量差,超负荷运转,工艺调整不良,误操作,拼设备、不清扫、温湿控制差,欠保养,风沙、浸水、地震,造成设备运转失常等现象。设备润滑常识一、使用润滑油过程中油品变黑是否正常?答:油品发黑原因有三:

(一)润滑油变质,(二)零件磨损,(三)杂质进入油箱,如果使用过程中无杂质进入油箱,则可以认为润滑油本身质量有问题,应更换油的品牌,润滑油使用一段时间后颜色略有加深属正常,但不应变得很黑。二、旧设备可以用差一些的油?

答:一般情况下,设备的磨损件是经过表面处理的,因此零件表面硬度较高,不易磨损,但零件内部较软,旧设备有的零件表面已有磨损,因此用较差润滑油更会加速零件的磨损。我们建议不要用较低级的或较差的润滑油。三、为什么其他油品不能代替齿轮油?

答:我们发现个别用户有用抗磨液压油、导轨油、汽轮机油(透平油)或普通机械油代替齿轮油的现象。这都是不正确的,因为整个机器的动力都是通过齿轮变速传动的,齿轮齿面上的啮合线承受了巨大的负荷,要求润滑油有极压性,而其他油品不含极压添加剂,起不到保护齿面的作用,因此会导致齿面产生点蚀、断裂等现象。四、只要粘度相同,不同类型齿轮油可以相互替代?

答:不可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论