版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
误差理论及数据处理第一页,共四十三页,2022年,8月28日第二章误差理论及数据处理第一节测定值的准确度与精密度在实际工作中,常根据准确度和精密度评价测定结果的优劣。一、准确度与误差真值是试样中某组分客观存在的真实含量,测定值x与真值T相接近的程度称为准确度。测定值与真值愈接近,其误差越小,测定结果的准确度越高。因此误差的大小是衡量准确度高低的标志,其表示方法如下:绝对误差:Ea=x-T相对误差:Er=Ea/T×100%
X:测定值。如果进行了平行测定,x:测定值的平均值。统计学证明,在一组平行测定值中,平均值是最可信赖的,它反映了该组数据的集中趋势,因此人们常用平均值表示测定结果。第二页,共四十三页,2022年,8月28日第二章误差理论及数据处理当测定值大于真值时误差为正值,表明测定结果偏高;反之误差为负,测定值偏低。因此绝对误差和相对误差都有正负之分。由于相对误差反映了误差在真值中所占的百分比,便于比较各种情况下测定结果的准确度,因而更具实际意义。总之,准确度的高低体现了系统误差和随机误差对测定结果综合影响的大小,反映了测定值的正确性。
一般来说,真值是未知的。随着分析测试技术的发展,测定结果越来越趋近于真值,但它毕竟不等于真值。在实际工作中,通常将公认的权威机构发售的标准参考物质,其证书上给出的数值称为真值。它是由许多资深的分析工作者,采用原理不同的方法(以消除系统误差),经过多次测定并对数据进行统计处理后得出的结果。它反映了当前分析工作的第三页,共四十三页,2022年,8月28日第二章误差理论及数据处理最(较)高水平,因而是相当准确的。但仍只是相对的真值。此外,在实际工作中,通常把一些常数,如气体常数,原子量等看作真值。有时也把测量精度高的仪器测量的数据看作测量精度低的仪器侧量数据的真值。第四页,共四十三页,2022年,8月28日第二章误差理论及数据处理二、精密度与偏差一组平行测定结果相互接近的程度称为精密度,它反映了测定值的再现性。由于在实际工作中真值常常是未知的,因此精密度就成为人们衡量测定结果的重要因素。精密度的高低取决于随机误差的大小,通常用偏差来量度。如果测定数据彼此接近,则偏差小,测定的精密度高;相反,数据分散,则偏差大,精密度低,说明随机误差的影响较大。由于平均值反映了测定数据的集中趋势,因此各测定值与平均值之差也就体现了精密度的高低。偏差的表示方法如下:(一)偏差、平均偏差和相对平均偏差偏差(个别测定偏差):各单次测定值与平均值之差,
di=xi-x
(i=1,2,…,n);第五页,共四十三页,2022年,8月28日第二章误差理论及数据处理平均偏差:个别测定偏差的绝对值加和除以测量次数,相对平均偏差:
平均偏差和相对平均偏差由于取了绝对值因而都是正值。第六页,共四十三页,2022年,8月28日第二章误差理论及数据处理(二)标准偏差和相对标准偏差由于在一系列测定值中,偏差小的值总是占多数,这样按总测定次数来计算平均偏差时会使所得的结果偏小,大偏差值得不到充分的反映。因此在数理统计中,一般不采用平均偏差,而广泛采用标准偏差来衡量数据的精密度,它反映了各测定值对平均值的偏离程度。标准偏差用s表示:样本的相对标准偏差(也称为变异系数),用Sr或RSD表示:第七页,共四十三页,2022年,8月28日第二章误差理论及数据处理第八页,共四十三页,2022年,8月28日第二章误差理论及数据处理以下用具体例子说明标准偏差比平均偏差能更灵敏地反映数据的精密度。例如测定某铜合金中铜的质量分数(%),两组测定值分别为10.3,9.8,9.6,10.2,10.1,10.4,10.0,9.7,10.2,9.710.0,10.1,9.3,10.2,9.9,9.8,10.5,9.8,10.3,9.9显然第二组数据比较分散,但计算结果却表明它们的平均偏差相同(d1=d2=0.24%),因此用平均偏差已不能正确地反映出这两组测定值精密度的差异。如果采用标准偏差则有s1=0.28%,s2=0.33%,s1<s2,表明第一组数据的精密度较第二组的高。第九页,共四十三页,2022年,8月28日第二章误差理论及数据处理除了偏差之外,还可以用极差R来表示样本平行测定值的精密度。极差又称全距,是测定数据中的最大值与最小值之差,R=xmax-xmin其值愈大表明测定值愈分散。由于没有充分利用所有的数据,故其精确性较差。偏差和极差的数值都在一定程度上反映了测定中随机误差影响的大小。此外还有公差,它是指生产部门对分析结果允许误差的一种表示方法,如果分析结果的误差超出允许的公差范围,称为超差,该项分析工作应重做。有关公差,由有关主管部门根据分析对象作出相关规定。第十页,共四十三页,2022年,8月28日第二章误差理论及数据处理三、准确度与精密度的关系综上所述,系统误差影响测定的准确度,而随机误差对精密度和准确度均有影响。评价测定结果的优劣,要同时衡量其准确度和精密度。例如由甲、乙、两、丁四人同时测定某铜合金中铜的质量分数(T=10.00%),各测定6次,其结果如图所示。其中乙的测定值同时具有较高的精密度和准确度,因而是比较可靠的。甲测定的精密度虽较高,但其平均值与真值相差较大,说明有系统误差存在,测定的准确度低。丙的测定结果精密度很差,表明随机误差的影响很大。虽然平均值靠近真值,这是因为正负误差几乎互相抵消的偶然结果,因而是不可靠的。丁的测定精密度低,其准确度低也是必然。可以说,丙的情况是丁的一种特例。
第十一页,共四十三页,2022年,8月28日第二章误差理论及数据处理第十二页,共四十三页,2022年,8月28日第二章误差理论及数据处理上述情况说明,精密度高表明测定条件稳定,这是保证准确度高的先决条件。精密度低的测定结果是不可靠的,因而是不准确的。但是高精密度的测定值中也可能包含有系统误差的影响,只有在消除了系统误差的前提下,精密度高其准确度必然也高。对于含量未知的试样,由于仅凭测定的精密度难以正确评价测定结果,因此常同时测定一个或数个标准试样,检查标样测定值的精密度,并对照真实值以确定它的准确度,从而对试样测定结果的可靠性做出评价。
第十三页,共四十三页,2022年,8月28日第二章误差理论及数据处理第二节误差及其产生的原因根据误差产生的原因及其性质的差异,可以分为系统误差和随机误差两类。一、系统误差系统误差是定量分析误差的主要来源,对测定结果的准确度有较大影响。它是由分析过程中某些确定的、经常性的因素引起的,因此对测定值的影响比较恒定。系统误差的特点是具有“重现性”和“单向性”。即在相同的条件下,重复测定时会重复出现;使测定结果系统偏高或偏低,即总是产生正误差或负误差,不会摆动,一会正,一会负。如果能找出产生误差的原因,并设法测出其大小,那么系统误差可以通过校正的方法子以减小或消除,因此也称之为可测误差。产生系统误差的原因主要有以下几种。第十四页,共四十三页,2022年,8月28日第二章误差理论及数据处理(一)方法误差方法误差来源于分析方法本身不够完善或有缺陷。例如,反应未能定量完成,干扰组分的影响,在滴定分析中滴定终点与化学计量点不相符合,在重量分析中沉淀的溶解损失、共沉淀和后沉淀的影响等,都可能导致测定结果系统地偏高或偏低。(二)仪器和试剂误差由于仪器不够精确或未经校准,从而引起仪器误差。例如,砝码因磨损或锈蚀造成其真实质量与名义质量不符;滴定分析器皿或仪表的刻度不准而又未经校正;由于实验容器披侵蚀引入了外来组分等。而试剂不纯和蒸馏水中的微量杂质则可能带来试剂误差。由上述两种因素造成的误差,其大小一般不因人而异。第十五页,共四十三页,2022年,8月28日第二章误差理论及数据处理(三)操作误差由于分析者的实际操作与正确的操作规程有所出入而引起操作误差。例如,使用了缺乏代表性的试样;试样分解不完全或反应的某条件控制不当等。与上述情况有所不同,有些误差是由于分析者的主观因素造成的,称之为“个人误差”。例如,在判断滴定终点的颜色时,有的人习惯偏深,有的人则偏浅;在读取滴定剂的体积时,有的人偏高,有的人则偏低等。还有的操作者有着“先人为主”的成见,特别对于那些终点不太明显的体系,他们不是注意溶液颜色的变化,而总是盯着滴定管的刻度,根据前次的结果来判定终点,从而产生操作误差。操作误差的大小可能因人而异,但对于同一操作者则往往是恒定的。第十六页,共四十三页,2022年,8月28日第二章误差理论及数据处理二、随机误差在平行测定中,即使消除了系统误差的影响,所得的数据仍然是参差不齐的,这是随机误差影响的结果。与系统误差不同,随机误差是由一些随机因素引起的,例如,测定时环境的温度、湿度、气压和外电路电压的微小变化;尘埃的影响;测量仪器自身的变动性;分析者处理各份试样时的微小差别以及读数的不确定性等。这些因素很难被人们觉察或控制,也无法避免,随机误差就是这些偶然因素综合作用的结果。它不但造成测定结果的波动,也使得测定值与真实值发生偏离。由于上述原因,随机误差的特点是其大小和正负都难以预测,且不可被校正,故随机误差又称为偶然误差或不可测误差。第十七页,共四十三页,2022年,8月28日第二章误差理论及数据处理对于有限次数的测定,随机误差似乎无规律可言。但是经过相当多次重复测定后,就会发现它的出现服从统计规律,并且可以通过适当增加平行测定的次数予以减小。
虽然系统误差与随机误差的性质和处理方法不同,但它们经常同时存在,有时也难以区分。例如,在重量分析中,因称量时试样吸湿而产生系统误差,但吸潮的程度又有偶然性。又如,滴定管的刻度误差属系统误差,但在一般的分析工作中常因其误差较小而不予校正,将其作为随机误差处理。第十八页,共四十三页,2022年,8月28日第二章误差理论及数据处理除了上述两种原因之外,在分析过程中还存在着因操作者的过失而引起的误差。例如损失试样、加错试剂、记录或计算错误等,有时甚至找不到确切的原因。过失是造成测定中大误差的重要因素,但在实质上它是一种错误,并不具备上述误差所具有的性质。作为分析者应加强责任感,培养严谨细致的工作作风,严格按照操作规程进行操作,那么过失是可以避免的。若在测定值中出现了误差很大的数据,就应该分析其产生的原因,如确系过失所引起的则应将其弃去,以保证测定结果准确可靠。
第十九页,共四十三页,2022年,8月28日第二章误差理论及数据处理第三节提高分析结果准确度的方法一、选择适当的分析方法在生产实践和科研工作中,对测定结果要求的准确度常与试样的组成、性质和待测组分的相对含量有关。化学分析法的灵敏度虽然不高,但对于常量组分的测定能得到较准确的结果,一般相对误差不超过千分之几。仪器分析法具有较高的灵敏度,用于微量或痕量组分的测定,对测定结果允许有较大的相对误差。例如用光谱法测定纯硅中的硼,结果为2×10-6%。若此方法的相对误差为50%,则试样中硼的含量应在1×10-6—3×10-6之间。看来相对误差很大,但由于待测组分含量很低,引入的绝对误差是很小的,能满足对测定准确度的要求。如果采用化学分析法则根本无法进行测定。第二十页,共四十三页,2022年,8月28日第二章误差理论及数据处理二、减小测量的相对误差仪器和量器的测量误差也是产生系统误差的因素之一。例如使用万分之一的分析天平,一般情况下称样的绝对误差为±0.0002g,如欲称量的相对误差不大于0.1%,那么应称量的最小质量可以按下式计算:又如在滴定分析中,滴定管的读数误差一般为±0.02mL,为使读数的相对误差小于0.1%,滴定时所消耗滴定剂的体积就应该在20mL以上;若使用25mL的滴定管,则应将滴定剂的体积控制在20—25mL之间。
第二十一页,共四十三页,2022年,8月28日第二章误差理论及数据处理三、检验和消除系统误差系统误差是定量分析中误差的主要来源,可以采用下述方法予以检验和消除。(一)对照试验对照实验用于检验和消除方法误差。用待检验的分析方法测定某标准试样或纯物质,并将结果与标准值或纯物质的理论值相对照。亦可用该方法与标准方法或公认的经典方法同时测定某一试样,并对结果进行显著性检验。如果判断两种方法之间确有系统误差存在,则需找出原因并予以校正。此外,为了检查分析人员之间的操作是否存在系统误差或其它方面的问题,常将一部分试样重复安排给不同的分析者进行测定,称之为“内检”。有时又将部分试样送交其它单位进行对照实验,称之为“外检”。第二十二页,共四十三页,2022年,8月28日第二章误差理论及数据处理(二)空白试验空白试验是在不加试样的情况下,按照与试样测定完全相同的条件和操作方法进行试验,所得的结果称为空白值。从试样测定结果中扣除空白值就起到了校正误差的作用。空白试验的作用是检验和消除由试剂、溶剂(大多数是水)和分析器皿(因被侵蚀)中某些杂质引起的系统误差。空白值一般应该比较小,经扣除后就可以得到比较可靠的测定结果。如果空白值较大,就应该通过提纯试剂、改用纯度较高的溶剂和采用其它更合适的分析器皿等来解决问题,才能提高测定的准确度。空白试验对于微(痕)量组分的测定具有很重要的作用。至于应选取何种纯度的试剂和溶剂应根据测定的要求而定,而不应盲目使用高纯度的试剂,以免造成浪费。第二十三页,共四十三页,2022年,8月28日第二章误差理论及数据处理(三)校准仪器和量器当允许测定结果的相对误差>0.1%时,一般不必校准仪器。在对准确度要求较高的测定中,对所使用的仪器或量器,如天平砝码的质量,滴定管、移液管和容量瓶的体积等都必须进行校准,在测定中采用校正值,以消除仪器和量器不准带来的误差。(四)改进分析方法或采用辅助方法校正测定结果分析方法的不完善是引起系统误差的主要因素,应尽可能找出原因并加以减免。例如,在滴定分析中选择更合适的指示剂以减小终点误差;使用有效的掩蔽方法以消除干扰组分的影响等。在重量分析中,设法减小沉淀的溶解度,使待测组分沉淀更加完全;减少沉淀对杂质的吸附等。如果方法误差无法消除,可以辅加其它的测定方法来校正测定结果。第二十四页,共四十三页,2022年,8月28日第二章误差理论及数据处理例如用重量法测定硅含量时,分离硅沉淀后的滤液中含有微量硅,可以采用光度法测出其含量,并将它加进重量法的结果中去,这样就校正了因沉淀不完全而带来的负误差。四、适当增加平行测定次数,减小随机误差由前面的讨论可知,在消除了系统误差之后.适当增加平行测定的次数可以减小随机误差的影响,提高测定结果的准确度。在一般的定量分析中,平行测定3-4次即可,如对测定结果的准确度要求较高时,可以再增加测定次数(通常为10次左右)。综上所述,选择合适的分析方法;尽量减小测量误差;消除或校正系统误差;适当增加平行测定次数,取平均值表示测定结果(减小随机误差);杜绝过失,就可以提高分析结果的准确度。第二十五页,共四十三页,2022年,8月28日第二章误差理论及数据处理§2.2分析结果的数据处理例:下列数据为燃烧法测定碳原子量(部分)结果,求:1.测定的碳原子量的平均值2.第三次测定的绝对偏差d3及相对偏差;3.整个测定的相对平均偏差;4.整个测定的标准偏差S及相对标准偏差RSD解:测定次数12345测定结果12.008012.009012.009512.010112.0106第二十六页,共四十三页,2022年,8月28日第二章误差理论及数据处理1.2.d3=12.0095-12.0094=+0.0001;相对偏差=3.d1=12.0080-12.0094=-0.0014;
d2=12.0090-12.0094=-0.0004;
d4=12.0101-12.0094=+0.0007;
d5=12.0106-12.0094=+0.0012;
整个测定相对平均偏差12.00941250.01060.01010.00950.00900.0080X=+++++=第二十七页,共四十三页,2022年,8月28日第二章误差理论及数据处理注意:一般,偏差或误差只取1~2位有效数字。其中,单次测定取1位,总测定取2位。第二十八页,共四十三页,2022年,8月28日第二章误差理论及数据处理§2.3有效数字及其运算规则在定量分析中,为了得到可靠的结果,不仅要准确测定每一项数据,还要进行正确的记录和计算。由于测定值不仅表示了试样中待测组分的含量多少,而且反映了测定的准确程度。因此了解有效数字的意义,掌握正确的使用方法,避免随意性,是非常重要的。一、有效数字的意义和位数测定常量组分的含量时,使用万分之一的分析天平进行称量。由于天平的感量是0.0001g,一般情况下在读出和记录质量时应该保留到小数点后4位数字。比如欲标定某溶液的浓度,称取了基准物质1.0010g。又如,欲配制溶液称取了某试剂1.0g,由于该质量仅保留了小数点后面1位数字,因此可以判断它是在感量为0.1g的台秤上称得的。第二十九页,共四十三页,2022年,8月28日第二章误差理论及数据处理上述例子表明,在分析测定中,记录实验数据和计算测定结果究竟应该保留几位数字,应该根据分析方法和分析仪器的准确度来确定,人为地增减数字的位数是错误的。因此,所谓有效数字是指在分析工作中实际能测量到的数字。而且从量器和仪表上读出的数据不可避免地带有不确定性。例如滴定中用去标准溶液21.68ml,前3位数字因滴定管上有刻度都能准确读数,但第4位数字因在两个刻度之间,只能由分析者估计读出,故此数字不太准确,我们称它为不确定数字或可疑数字。由于不确定数字所表示的量是客观存在的,仅因为受到仪器刻度的精细程度的限制,在估计时会受到观察者主观因素的影响而不能对它准确认定,因此它仍然是一位有效数字(通常有1个单位的误差)。同理,基准物的质量为1.0010g,其中最后一位数字“0”也是不确定数字。
第三十页,共四十三页,2022年,8月28日第二章误差理论及数据处理综上所述,有效数字是由全部准确数字和最后一位(只能是一位)不确定数字组成,它们共同决定了有效数字的位数。有效数字位数的多少反映了测量的准确度。例如用分析天平称取了1.0010g样品,一般情况下称量的绝对误差是0.0002g那么相对误差是:若用台秆称取试祥1.0g称置的绝对误差为0.2g则相对误差为:
第三十一页,共四十三页,2022年,8月28日第二章误差理论及数据处理可见测量的准确度较前者低很多。结果表明,在测定准确度允许的范围内,数据中有效数字的位数越多,表明测定的准确度越高。当然,超过了测量准确度范围的过多位数是毫无意义的。同时,数字后面的“0”也体现了一定的测量准确度,因而不可任意取舍。当使用准确度较高的量器(滴定管、容量瓶和移液管等)量度溶液的体积时,数据应记至小数点后面2位,例如20.00ml而不应写成20mL,否则使人误解是用量简量取的镕液体积。同理,滴定管的初始读数为零时,应记作0.00mL,而不是0mL。对于数据中的“0”,其情况要作具体分析。例如下面各数有效数字的位数分别为:1.0005,五位;0.0540,1.86×10-5,三位;0.5,0.002%,一位;6.023×1023,0.05000,四位;0.054,0.40%,两位;100,2800较含糊。第三十二页,共四十三页,2022年,8月28日第二章误差理论及数据处理以上情况表明,数字之间与数字之后的“0”是有效数字,因为它们是由测量所得到的0,而数字前面的“0”是起定位作用的,它的个数与所取的单位有关而与测量的准确度无关,因而不是有效数字。例如20.00mL改用L为单位时.表示成0.02000L,有效数字均是四位。而像2800,其有效数字的位数都比较模糊,一般可视为四位。如果根据测量的实际情况,采用科学计效法将其表示成2.8×103,2.80×103或2.800×103,则分别表示二、三或四位有效数字,其位数就明确了。对于非测量所得的数字,如倍数、分数,它们没有不确定性,其有效数字可视为无限多位,根据具体的情况来确定。还有π、e等常数也如此处理。
第三十三页,共四十三页,2022年,8月28日第二章误差理论及数据处理
pH、pc、pK等对数和负对数值,其有效数字的位数仅取决于小数点后数字的位数,而其整数部分只说明了该数据的方次。例如[H+]=0.0020mol·L-1,亦可写成2.0×10-3mol·L-1或pH=2.70,其有效数字均为两位。此外,在乘除运算中,如果有效数字位数最少的因数的首数是“8”或“9”,则积或商的有效数字位数可以比这个因数多取一位。例如9.0×0.241÷2.84,其中9.0有效数字位数最少,只有两位,但是它的相对误差约为±1%与10.0三位有效数字的相对误差接近,所以最后结果可保留三位,即等于0.764。第三十四页,共四十三页,2022年,8月28日第二章误差理论及数据处理二、数字修约规则在分析测试中.可能涉及到使用数种准确度不同的仪器,因而所得数据的位数也不尽相同。在进行计算之前,必须按照统一的规则确定一致的位数,舍去某些数据后面多余的数字(称尾数),这个过程称为“数字修约”,它遵循的原则是“四舍六入五成双”。具体的做法是,当尾数≤4时将其舍去;尾数≥6时就进一位;如果尾数为5而则看前方:前为奇数就进位,前为偶数则舍去;但是当“5”后面还有数字时,不管这个数是零,还是其它数字,都须向前进一位。例如将下列数据全部修约为四位有效数字时:0.053664→0.05366;0.58346→0.5835;16.415→16.42;18.065→18.06;10.2750→10.28;27.1850→27.19。必须注意,进行数字修约时只能一次修约到指定的位数。第三十五页,共四十三页,2022年,8月28日第二章误差理论及数据处理三、有效数字的运算规则(一)加减法:当几个数据相加或相减时,它们的和或差保留几位有效数字,应以小数点后位数最少(即绝对误差最大)的数为依据。例如0.0121,25.64和1.027三个数相加,由于25.64中的“4”已经是不确定数字,这样三个数相加后,小数点后的第2位就已不确定了。因此我们首先按照数字修约规则,使其余两数都修约至小数点后面两位,然后再相加。第三十六页,共四十三页,2022年,8月28日第二章误差理论及数据处理(二)乘除法:对几个数据进行乘除运算时,它们的积或商的有效数字位数,应以其中相对误差最大的(即有效数字位数最少的)那个数为依据。例如欲求0.0121,25.64和1.027相乘之积,三个数的相对误差分别为:第一个数的相对误差最大。因此,应以它为根据对其它两数进行修约,即各数均取三位有效数字后再相乘,结果的有效数字也为三位:0.0121×25.6×1.03=0.319。使用计算器计算时,一般不对中间的计算结果进行修约,仅对最后的结果进行修约,使其符合事先确定的位数。第三十七页,共四十三页,2022年,8月28日第二章误差理论及数据处理四、有效数字运算规则在分析化学中的应用1.根据分析仪器和分析方法的准确度正确读出和记录测定值,且只保留一位不确定数字。例如,使用分析天平,称量误差一般为±0.000xg;滴定管读数误差一般±0.0xmL等等。当然主要还是根据具体的要求和实际情况而定。2.在计算测定结果之前,先根据运算方法确定欲保留的位数,然后按照数字修约规则对各测定值进行修约,先修约,后计算。最后的计算结果需保留几位有效数字,一定要符合事先确定的情况。3.分析化学中的计算主要有两大类。一类是各种化学平衡中有关浓度的计算。该过程中一般都要使用有关的平衡常数,如Ka,Kb、K形、E和Ksp等。此时可依照上述平衡常数的位数来确定计算结果有效数字的位数,一般为两至三位。第三十八页,共四十三页,2022年,8月28日第二章误差理论及数据处理还有一类是计算测定结果。确定其有效数字位数与待测组分在试样中的相对含量有关,一般具体要求如下:对于高含量组分(一般大于10%)的测定,四位有效数字;对中含量组分(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《女生健美操》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《药品与生物制品检测》2023-2024学年第一学期期末试卷
- 2025贵州省建筑安全员《B证》考试题库及答案
- 贵阳人文科技学院《室内空气污染监测与治理实验》2023-2024学年第一学期期末试卷
- 广州珠江职业技术学院《电路分析实验》2023-2024学年第一学期期末试卷
- 2025天津市安全员-C证考试题库
- 广州应用科技学院《女性文学与女性文化研究》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《城乡规划设计基础II》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《电化学与腐蚀原理》2023-2024学年第一学期期末试卷
- 2025云南省建筑安全员-C证考试(专职安全员)题库附答案
- 2024年高考英语词汇表-带音标
- 垫底辣妹教育学思考(3篇模板)
- 框架结构设计国内外研究现状
- 基因检测销售基础知识培训手册
- 创新人才认证(解决方案)考试题库(附答案)
- 新质生产力-讲解课件
- 湖北省随州市曾都区2023-2024学年九年级上学期期末考试英语试题
- 3年级数学三位数除以一位数2000题
- 2023-2024学年人教版七年级下册地理知识清单
- 20以内最大最小能填几专项练习126+129题
- 2024初中数学竞赛9年级竞赛辅导讲义专题13 旋转变换含答案
评论
0/150
提交评论