高考数学(文)一轮复习教案7对数与对数函数_第1页
高考数学(文)一轮复习教案7对数与对数函数_第2页
高考数学(文)一轮复习教案7对数与对数函数_第3页
高考数学(文)一轮复习教案7对数与对数函数_第4页
高考数学(文)一轮复习教案7对数与对数函数_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

INET】1.(2022·安徽十校联盟联考)已知a=log23,b=2log53,c=,则a,b,c的大小关系为()A.a>c>b B.a>b>cC.b>a>c D.c>b>a答案B解析∵a=log23>1,b=2log53=log59>1,c=<0,∴eq\f(a,b)=eq\f(log23,log59)=eq\f(lg3,lg2)×eq\f(lg5,lg9)=eq\f(lg3,lg2)×eq\f(lg5,2lg3)=eq\f(lg5,2lg2)=eq\f(lg5,lg4)=log45>1,∴a>b,∴a>b>c.2.若f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上单调递减,则a的取值范围为()A.[1,2) B.[1,2]C.[1,+∞) D.[2,+∞)答案A解析令函数g(x)=x2-2ax+1+a=(x-a)2+1+a-a2,对称轴为x=a,要使函数f(x)在(-∞,1]上单调递减,则有eq\b\lc\{\rc\(\a\vs4\al\co1(g?1?>0,,a≥1,))即eq\b\lc\{\rc\(\a\vs4\al\co1(2-a>0,,a≥1,))解得1≤a<2,即a∈[1,2).思维升华求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a,b,c满足loga2<logb2<logc2<0,则下列关系中正确的是()A.a<b<c B.b<a<cC.c<b<a D.a<c<b答案C解析根据不等式的性质和对数的换底公式可得eq\f(1,log2a)<eq\f(1,log2b)<eq\f(1,log2c)<0,即log2c<log2b<log2a<0,可得c<b<a<1.(2)若函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(logax,x≥2,,-logax-4,0<x<2))存在最大值,则实数a的取值范围是.答案eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(2),2)))解析当a>1时,函数f(x)=logax在[2,+∞)上单调递增,无最值,不满足题意,故0<a<1.当x≥2时,函数f(x)=logax在[2,+∞)上单调递减,f(x)≤f(2)=loga2;当0<x<2时,f(x)=-logax-4在(0,2)上单调递增,f(x)<f(2)=-loga2-4,则loga2≥-loga2-4,即loga2≥-2=logaa-2,即eq\f(1,a2)≥2,0<a≤eq\f(\r(2),2),故实数a的取值范围是eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(2),2))).课时精练1.(2022·重庆巴蜀中学月考)设a=eq\f(1,2),b=log7eq\r(5),c=log87,则()A.a>b>c B.a>c>bC.c>b>a D.c>a>b答案D解析a=eq\f(1,2)=log7eq\r(7)>b=log7eq\r(5),c=log87>log8eq\r(8)=eq\f(1,2)=a,所以c>a>b.2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2xB.eq\f(1,2x)C.D.2x-2答案A解析函数y=ax(a>0,且a≠1)的反函数是f(x)=logax,又f(2)=1,即loga2=1,所以a=2.故f(x)=log2x.3.函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①② B.①④C.②③ D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y=0得loga(x+c)=0,x+c=1,x=1-c,由图象知0<1-c<1,∴0<c<1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m2)表示,但在实际测量时,声音的强度水平常用L1=10lg?eq\f(I,I0)(单位:分贝,L1≥0,其中I0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I的取值范围是()A.(-∞,10-7) B.[10-12,10-5)C.[10-12,10-7) D.(-∞,10-5)答案C解析由题意可得,0≤10·lg?eq\f(I,I0)<50,即0≤lgI-lg(1×10-12)<5,所以-12≤lgI<-7,解得10-12≤I<10-7,所以声音强度I的取值范围是[10-12,10-7).5.设函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(log2x,x>0,,?-x?,x<0.))若f(a)>f(-a),则实数a的取值范围是()A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)答案C解析由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,log2a>))或eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,,?-a?>log2?-a?,))解得a>1或-1<a<0.6.(2022·汉中模拟)已知log23=a,3b=7,则log2156等于()A.eq\f(ab+3,a+ab) B.eq\f(3a+b,a+ab)C.eq\f(ab+3,a+b) D.eq\f(b+3,a+ab)答案A解析由3b=7,可得log37=b,所以log2156=eq\f(log3?7×23?,log3?3×7?)=eq\f(log37+log323,log33+log37)=eq\f(b+3×\f(1,a),1+b)=eq\f(ab+3,a+ab).7.(2022·海口模拟)log3eq\r(27)+lg25+lg4++的值等于.答案eq\f(7,2)解析原式=log3+lg52+lg22+2+=eq\f(3,2)+2lg5+2lg2+2+(-2)=eq\f(3,2)+2(lg5+lg2)+2+(-2)=eq\f(3,2)+2+2+(-2)=eq\f(7,2).8.已知函数y=loga(x-3)-1的图象恒过定点P,则点P的坐标是.答案(4,-1)解析令x-3=1,则x=4,∴y=loga1-1=-1,故点P的坐标为(4,-1).9.设f(x)=log2(ax-bx),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)当x∈[1,2]时,求f(x)的最大值.解(1)因为f(x)=log2(ax-bx),且f(1)=1,f(2)=log212,所以eq\b\lc\{\rc\(\a\vs4\al\co1(log2?a-b?=1,,log2?a2-b2?=log212,))即eq\b\lc\{\rc\(\a\vs4\al\co1(a-b=2,,a2-b2=12,))解得a=4,b=2.(2)由(1)得f(x)=log2(4x-2x),令t=4x-2x,则t=4x-2x=eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,2)))2-eq\f(1,4),因为1≤x≤2,所以2≤2x≤4,所以eq\f(9,4)≤eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,2)))2≤eq\f(49,4),即2≤t≤12,因为y=log2t在[2,12]上单调递增,所以ymax=log212=2+log23,即函数f(x)的最大值为2+log23.10.(2022·枣庄模拟)已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.(1)判断f(x)的奇偶性并予以证明;(2)当a>1时,求使f(x)>0的x的解集.解(1)f(x)是奇函数,证明如下:因为f(x)=loga(x+1)-loga(1-x),所以eq\b\lc\{\rc\(\a\vs4\al\co1(x+1>0,,1-x>0,))解得-1<x<1,f(x)的定义域为(-1,1).f(-x)=loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(-x+1)]=-f(x),故f(x)是奇函数.(2)因为当a>1时,y=loga(x+1)是增函数,y=loga(1-x)是减函数,所以当a>1时,f(x)在定义域(-1,1)内是增函数,f(x)>0即loga(x+1)-loga(1-x)>0,logaeq\f(x+1,1-x)>0,eq\f(x+1,1-x)>1,eq\f(2x,1-x)>0,2x(1-x)>0,解得0<x<1,故使f(x)>0的x的解集为(0,1).11.设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b答案B解析∵a=log0.20.3>log0.21=0,b=log20.3<log21=0,∴ab<0.∵eq\f(a+b,ab)=eq\f(1,a)+eq\f(1,b)=log0.30.2+log0.32=log0.30.4,∴1=log0.30.3>log0.30.4>log0.31=0,∴0<eq\f(a+b,ab)<1,∴ab<a+b<0.12.若实数x,y,z互不相等,且满足2x=3y=log4z,则()A.z>x>y B.z>y>xC.x>y,x>z D.z>x,z>y答案D解析设2x=3y=log4z=k>0,则x=log2k,y=log3k,z=4k,根据指数、对数函数图象易得4k>log2k,4k>log3k,即z>x,z>y.13.函数f(x)=log2eq\r(x)·(2x)的最小值为.答案-eq\f(1,4)解析依题意得f(x)=eq\f(1,2)log2x·(2+2log2x)=(log2x)2+log2x=eq\b\lc\(\rc\)(\a\vs4\al\co1(log2x+\f(1,2)))2-eq\f(1,4)≥-eq\f(1,4),当log2x=-eq\f(1,2),即x=eq\f(\r(2),2)时等号成立,所以函数f(x)的最小值为-eq\f(1,4).14.已知函数f(x)=|log2x|,实数a,b满足0<a<b,且f(a)=f(b),则a+b的取值范围是________.答案(2,+∞)解析∵f(x)=|log2x|,∴f(x)的图象如图所示,又f(a)=f(b)且0<a<b,∴0<a<1,b>1且ab=1,∴a+b≥2eq\r(ab)=2,当且仅当a=b时取等号.又0<a<b,故a+b>2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2 D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3b=3a+log3a=f(a),∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,得log2(2x-4)>2,得2x-4>4,得2x>8,解得x>3.故不等式f(x)>2的解集是(3,+∞).(2)因为函数f(x)=log2(2x+k)(k∈R)的图象过点P(0,1),所以f(0)=1,即log2(1+k)=1,解得k=1.所以f(x)=log2(2x+1).因为关于x的方程f(x)=x-2m有实根,即log2(2x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论