(经典)中考数学几何题总汇_第1页
(经典)中考数学几何题总汇_第2页
(经典)中考数学几何题总汇_第3页
(经典)中考数学几何题总汇_第4页
(经典)中考数学几何题总汇_第5页
已阅读5页,还剩169页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(经典)中考数学几何题总汇LtDPAGEPAGE4三角形知识考点:理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。关键是正确理解有关概念,学会概念和定理的运用。应用方程知识求解几何题是这部分知识常用的方法。精典例题:【例1】已知一个三角形中两条边的长分别是、,且,那么这个三角形的周长的取值范围是()A、B、C、D、分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。答案:B变式与思考:在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A、1<AB<29B、4<AB<24C、5<AB<19D、9<AB<19评注:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。【例2】如图,已知△ABC中,∠ABC=450,∠ACB=610,延长BC至E,使CE=AC,延长CB至D,使DB=AB,求∠DAE的度数。跟踪训练:一、填空题:1、三角形的三边为1,,9,则的取值范围是。2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为。3、在△ABC中,若∠C=2(∠A+∠B),则∠C=度。4、如果△ABC的一个外角等于1500,且∠B=∠C,则∠A=。5、如果△ABC中,∠ACB=900,CD是AB边上的高,则与∠A相等的角是。6、如图,在△ABC中,∠A=800,∠ABC和∠ACB的外角平分线相交于点D,那么∠BDC=。7、如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD的周长为28cm,则DB=。8、纸片△ABC中,∠A=650,∠B=750,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=200,则∠2的度数为。9、在△ABC中,∠A=500,高BE、CF交于点O,则∠BOC=。10、若△ABC的三边分别为、、,要使整式,则整数应为。二、选择题:1、若△ABC的三边之长都是整数,周长小于10,则这样的三角形共有()A、6个B、7个C、8个D、9个2、在△ABC中,AB=AC,D在AC上,且BD=BC=AD,则∠A的度数为()A、300B、360C、450D、7203、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为()A、7B、11C、7或11D、不能确定4、在△ABC中,∠B=500,AB>AC,则∠A的取值范围是()A、00<∠A<1800B、00<∠A<800C、500<∠A<1300D、800<∠A<13005、若、、是三角形的三个内角,而,,,那么、、中,锐角的个数的错误判断是()A、可能没有锐角B、可能有一个锐角C、可能有两个锐角D、最多一个锐角6、如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是()A、锐角三角形B、直角三角形C、钝角三角形D、正三角形三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在△ABC中,∠A=960,延长BC到D,∠ABC与∠ACD的平分线相交于,∠BC与∠CD的平分线相交于,依此类推,∠BC与∠CD的平分线相交于,则∠的大小是多少?4、如图,已知OA=,P是射线ON上一动点(即P可在射线ON上运动),∠AON=600,填空:(1)当OP=时,△AOP为等边三角形;(2)当OP=时,△AOP为直角三角形;(3)当OP满足时,△AOP为锐角三角形;(4)当OP满足时,△AOP为钝角三角形。一、填空题:1、;2、2;3、1200;4、300或1200;5、∠DCB;6、500;7、8cm;8、600;9、1300;10、偶数。二、选择题:CBCBCB三、解答题:1、6种(4、8、8;4、8、10;8、8、10;8、8、12;8、10、12、4、10、12)2、可以,设延伸部分为,则长为,,的三条线段中,最长,∵∴只要,长为,,的三条线段可以组成三角形设长为的线段所对的角为,则为△ABC的最大角又由当,即时,△ABC为直角三角形。3、304、(1);(2)或;(3)<OP<;(4)0<OP<或OP>2.全等三角形知识考点:掌握用三角形全等的判定定理来解决有关的证明和计算问题,灵活运用三角形全等的三个判定定理来证明三角形全等。精典例题:【例1】如图,已知AB⊥BC,DC⊥BC,E在BC上,AE=AD,AB=BC。求证:CE=CD。分析:作AF⊥CD的延长线(证明略)评注:寻求全等的条件,在证明两条线段(或两个角)相等时,若它们所在的两个三角形不全等,就必须添加辅助线,构造全等三角形,常见辅助线有:①连结某两个已知点;②过已知点作某已知直线的平行线;③延长某已知线段到某个点,或与已知直线相交;④作一角等于已知角。【例2】如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD。分析:采用截长补短法,延长AC至 E,使AE=AB,连结DE;也可在AB上截取AE=AC,再证明EB=CD(证明略)。探索与创新:【问题一】阅读下题:如图,P是△ABC中BC边上一点,E是AP上的一点,若EB=EC,∠1=∠2,求证:AP⊥BC。证明:在△ABE和△ACE中,EB=EC,AE=AE,∠1=∠2∴△ABE≌△ACE(第一步)∴AB=AC,∠3=∠4(第二步)∴AP⊥BC(等腰三角形三线合一)上面的证明过程是否正确?若正确,请写出每一步的推理依据;若不正确,请指出关键错在哪一步,并写出你认为正确的证明过程。略解:不正确,错在第一步。正确证法为:∵BE=CE∴∠EBC=∠ECB又∵∠1=∠2∴∠ABC=∠ACB,AB=AC∴△ABE≌△ACE(SAS)∴∠3=∠4又∵AB=AC∴AP⊥BC评注:本题是以考查学生练习中常见错误为阅读材料设计而成的阅读性试题,其目的是考查学生阅读理解能力,证明过程中逻辑推理的严密性。阅读理解题是近几年各地都有的新题型,应引起重视。【问题二】众所周知,只有两边和一角对应相等的两个三角形不一定全等,你能想办法安排和外理这三个条件,使这两个三角形全等吗?请同学们参照下面的方案(1)导出方案(2)(3)(4)。解:设有两边和一角对应相等的两个三角形,方案(1):若这个角的对边恰好是这两边中的大边,则这两个三角形全等。方案(2):若这个角是直角,则这两个三角形全等。方案(3):若此角为已知两边的夹角,则这两个三角形全等。评注:这是一道典型的开放性试题,答案不是唯一的。如方案(4):若此角为钝角,则这两个三角形全等。(5):若这两个三角形都是锐解(钝角)三角形,则这两个三角形全等。能有效考查学生对三角形全等概念的掌握情况,这类题目要求学生依据问题提供的题设条件,寻找多种途径解决问题。本题要求学生着眼于弱化题设条件,设计让命题在一般情况不成立,而特殊情况下成立的思路。跟踪训练:一、填空题:1、若△ABC≌△EFG,且∠B=600,∠FGE-∠E=560,则∠A=度。2、如图,AB∥EF∥DC,∠ABC=900,AB=DC,那么图中有全等三角形对。3、如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶DB=3∶5,则点D到AB的距离是。4、如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。5、如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段(不包括AB=CD和AD=BC)。6、如图,∠E=∠F=900,∠B=∠C,AE=AF。给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是(填序号)。二、选择题:1、如图,AD⊥AB,EA⊥AC,AE=AD,AB=AC,则下列结论中正确的是()A、△ADF≌△AEGB、△ABE≌△ACDC、△BMF≌△CNGD、△ADC≌△ABE2、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A、600B、700C、750D、8503、如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角()A、相等B、不相等C、互余D、互补或相等4、如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=,PC=,AB=,AC=,则与的大小关系是()A、>B、<C、=D、无法确定三、解答题:1、如图,∠1=∠2,∠3=∠4,EC=AD。求证:△ABE和△BDC是等腰三角形。2、如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点。(1)求证:AF⊥CD;(2)在你连结BE后,还能得出什么新结论?请再写出两个。3、(1)已知,在△ABC和△DEF中,AB=DE,BC=EF,∠BAC=∠EDF=1000,求证:△ABC≌△DEF;(2)上问中,若将条件改为AB=DE,,BC=EF,∠BAC=∠EDF=700,结论是否还成立,为什么?4、如图,已知∠MON的边OM上有两点A、B,边ON上有两点C、D,且AB=CD,P为∠MON的平分线上一点。问:(1)△ABP与△PCD是否全等?请说明理由。(2)△ABP与△PCD的面积是否相等?请说明理由。5、如图,已知CE⊥AB,DF⊥AB,点E、F分别为垂足,且AC∥BD。(1)根据所给条件,指出△ACE和△BDF具有什么关系?请你对结论予以证明。(2)若△ACE和△BDF不全等,请你补充一个条件,使得两个三角形全等,并给予证明。参考答案一、填空题:1、32;2、3;3、15;4、AH=BC或EA=EC或EH=EB等;5、DC=DE或BC=BE或OA=OE等;6、①②③二、选择题:BBDA三、解答题:1、略;2、(1)略;(2)AF⊥BE,AF平分BE等;3、(1)略;(2)不成立,举一反例即能说明;4、(1)不一定全等,因△ABP与△PCD中,只有AB=CD,而其它角和边都有可能不相等,故两三角形不一定全等。(2)面积相等,因为OP为∠MON平分线上一点,故P到边AB、CD上的距离相等,即△ABP中AB边上的高与△PCD中CD边上的高相等,又根据AB=CD(即底边也相等)从而△ABP与△PCD的面积相等。5、(1)△ACE和△BDF的对应角相等;(2)略4.直角三角形、勾股定理、面积知识考点:了解直角三角形的判定与性质,理解直角三角形的边角关系,掌握用勾股定理解某些简单的实际问题。它的有关性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系及与面积有关的问题等方面。精典例题:【例1】如图,在四边形ABCD中,∠A=600,∠B=∠D=900,BC=2,CD=3,则AB=?分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。答案:【例2】如图,P为△ABC边BC上一点,PC=2PB,已知∠ABC=450,∠APC=600,求∠ACB的度数。分析:本题不能简单地由角的关系推出∠ACB的度数,而应综合运用条件PC=2PB及∠APC=600来构造出含300角的直角三角形。这是解本题的关键。答案:∠ACB=750(提示:过C作CQ⊥AP于Q,连结BQ,则AQ=BQ=CQ)探索与创新:【问题一】如图,公路MN和公路PQ在点P处交汇,且∠QPN=300,点A处有一所中学,AP=160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN上沿PN方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米/小时,那么学校受影响的时间为多少秒?分析:从学校(A点)距离公路(MN)的最近距离(AD=80米)入手,在距A点方圆100米的范围内,利用图形,根据勾股定理和垂径定理解决它。略解:作AD⊥MN于D,在Rt△ADP中,易知AD=80。所以这所学校会受到噪声的影响。以A为圆心,100米为半径作圆交MN于E、F,连结AE、AF,则AE=AF=100,根据勾股定理和垂径定理知:ED=FD=60,EF=120,从而学校受噪声影响的时间为:(小时)=24(秒)评注:本题是一道存在性探索题,通过给定的条件,判断所研究的对象是否存在。【问题二】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图12,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东300方向往C移动,且台风中心风力不变。若城市所受风力达到或超过四级,则称为受台风影响。(1)该城市是否会受到这次台风的影响?请说明理由。(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?解:(1)如图1,由点A作AD⊥BC,垂足为D。∵AB=220,∠B=30°∴AD=110(千米)。由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。故该城市会受到这次台风的影响。(2)由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。则AE=AF=160。当台风中心从E处移到F处时,该城市都会受到这次台风的影响。由勾股定理得:。∴EF=60(千米)。∵该台风中心以15千米/时的速度移动。∴这次台风影响该城市的持续时间为(小时)。(3)当台风中心位于D处时,A市所受这次台风的风力最大,其最大风力为12-=6.5(级)。评注:本题是一道几何应用题,解题时要善于把实际问题抽象成几何图形,并领会图形中的几何元素代表的意义,由题意可分析出,当A点距台风中心不超过160千米时,会受台风影响,若过A作AD⊥BC于D,设E,F分别表示A市受台风影响的最初,最后时台风中心的位置,则AE=AF=160;当台风中心位于D处时,A市受台风影响的风力最大。跟踪训练:一、填空题:1、如果直角三角形的边长分别是6、8、,则的取值范围是。2、如图,D为△ABC的边BC上的一点,已知AB=13,AD=12,,BD=5,AC=BC,则BC=。3、如图,四边形ABCD中,已知AB∶BC∶CD∶DA=2∶2∶3∶1,且∠B=900,则∠DAB=。4、等腰△ABC中,一腰上的高为3cm,这条高与底边的夹角为300,则=。5、如图,△ABC中,∠BAC=900,∠B=2∠C,D点在BC上,AD平分∠BAC,若AB=1,则BD的长为。6、已知Rt△ABC中,∠C=900,AB边上的中线长为2,且AC+BC=6,则=。7、如图,等腰梯形ABCD中,AD∥BC,腰长为8cm,AC、BD相交于O点,且∠AOD=600,设E、F分别为CO、AB的中点,则EF=。8、如图,点D、E是等边△ABC的BC、AC上的点,且CD=AE,AD、BE相交于P点,BQ⊥AD。已知PE=1,PQ=3,则AD=。9、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积的和是。二、选择题:1、如图,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP中()A、全部正确B、仅①和②正确C、仅①正确D、仅①和③正确2、如果一个三角形的一条边的长是另一条边的长的2倍,并且有一个角是300,那么这个三角形的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定3、在四边形ABCD中,AD⊥CD,AB=13,BC=12,CD=4,AD=3,则∠ACB的度数是()A、大于900B、小于900C、等于900D、不能确定4、如图,已知△ABC中,∠B=900,AB=3,BC=,OA=OC=,则∠OAB的度数为()A、100B、150C、200D、250三、解答题:1、阅读下面的解题过程:已知、、为△ABC的三边,且满足,试判断△ABC的形状。解:∵……①∴……②∴……③∴△ABC是直角三角形。问:(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号;(2)错误的原因是;(3)本题的正确结论是。2、已知△ABC中,∠BAC=750,∠C=600,BC=,求AB、AC的长。3、如图,△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE于G。(1)求证:G是CE的中点;(2)∠B=2∠BCE。4、如图,某校把一块形状近似于直角三角形的废地开辟为生物园,∠ACB=900,BC=60米,∠A=360。(1)若入口E在边AB上,且与A、B等距离,请你在图中画出入口E到C点的最短路线,并求最短路线CE的长(保留整数);(2)若线段CD是一条水渠,并且D点在边AB上,已知水渠造价为50元/米,水渠路线应如何设计才能使造价最低?请你画出水渠路线,并求出最低造价。参考数据:sin360=0.5878,sin540=0.80905、已知△ABC的两边AB、AC的长是方程的两个实数根,第三边BC=5。(1)为何值时,△ABC是以BC为斜边的直角三角形;(2)为何值时,△ABC是等腰三角形,求出此时其中一个三角形的面积。参考答案一、填空题:1、10或;2、16.9;3、1350;4、cm2;5、;6、5;7、48、7;9、49二、选择题:BDCB三、解答题:1、(1)③;(2)略;(3)直角三角形或等腰三角形2、提示:过A作AD⊥BC于D,则AB=,AC=3、提示:连结ED4、(1)51米;(2)若要水渠造价最低,则水渠应与AB垂直,造价2427元。5、(1)2;(2)=4或3,当=4时,面积为12。5.角平分线、垂直平分线知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。精典例题:【例题】如图,已知在△ABC中,AB=AC,∠B=300,AB的垂直平分线EF交AB于点E,交BC于点F,求证:CF=2BF。分析一:要证明CF=2BF,由于BF与CF没有直接联系,联想题设中EF是中垂线,根据其性质可连结AF,则BF=AF。问题转化为证CF=2AF,又∠B=∠C=300,这就等价于要证∠CAF=900,则根据含300角的直角三角形的性质可得CF=2AF=2BF。分析二:要证明CF=2BF,联想∠B=300,EF是AB的中垂线,可过点A作AG∥EF交FC于G后,得到含300角的Rt△ABG,且EF是Rt△ABG的中位线,因此BG=2BF=2AG,再设法证明AG=GC,即有BF=FG=GC。分析三:由等腰三角形联想到“三线合一”的性质,作AD⊥BC于D,则BD=CD,考虑到∠B=300,不妨设EF=1,再用勾股定理计算便可得证。以上三种分析的证明略。探索与创新:【问题】请阅读下面材料,并回答所提出的问题:三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如图,△ABC中,AD是角平分线。求证:。分析:要证,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似,现在B、D、C在同一条直线上,△ABD与△ADC不相似,需要考虑用别的方法换比。我们注意到在比例式中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、CD、AB的第四比例项AE,这样,证明就可以转化为证AE=AC。证明:过C作CE∥AD交BA的延长线于ECE∥AD∠E=∠3AE=ACCE∥AD∴(1)上述证明过程中,用了哪些定理(写出两个定理即可);(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种?选出一个填入后面的括号内()①数形结合思想②转化思想③分类讨论思想答案:②转化思想(3)用三角形内角平分线性质定理解答问题:已知AD是△ABC中∠BAC的角平分线,AB=5cm,AC=4cm,BC=7cm,求BD的长。答案:cm评注:本题的目的主要在于考查学生的阅读理解能力。跟踪训练:一、填空题:1、如图,∠A=520,O是AB、AC的垂直平分线的交点,那么∠OCB=。2、如图,已知AB=AC,∠A=440,AB的垂直平分线MN交AC于点D,则∠DBC=。3、如图,在△ABC中,∠C=900,∠B=150,AB的中垂线DE交BC于D点,E为垂足,若BD=8,则AC=。4、如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为24,BC=10,则AB=。5、如图,EG、FG分别是∠MEF和∠NFE的角平分线,交点是G,BP、CP分别是∠MBC和∠NCB的角平分线,交点是P,F、C在AN上,B、E在AM上,若∠G=680,那么∠P=。二、选择题:1、如图,△ABC的角平分线CD、BE相交于点F,且∠A=600,则∠BFC等于()A、800B、1000C、1200D、14002、如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=360,则∠C的度数为()A、820B、720C、620D、5203、某三角形有一个外角平分线平行于三角形的一边,而这三角形另一边上的中线分周长为2∶3两部分,若这个三角形的周长为30cm,则此三角形三边长分别是()A、8cm、8cm、14cmB、12cm、12cm、6cmC、8cm、8cm、14cm或12cm、12cm、6cmD、以上答案都不对4、如图,Rt△ABC中,∠C=900,CD是AB边上的高,CE是中线,CF是∠ACB的平分线,图中相等的锐角为一组,则共有()A、0组B、2组C、3组D、4组5、如果三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、不能确定三、解答题:1、如图,Rt△ABC的∠A的平分线与过斜边中点M的垂线交于点D,求证:MA=MD。2、在△ABC中,AB≠AC,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC,求证:AE平分∠BAC。3、如图,在△ABC中,∠B=22.50,∠C=600,AB的垂直平分线交BC于点D,BD=,AE⊥BC于点E,求EC的长。4、如图,在Rt△ABC中,∠ACB=900,AC=BC,D为BC的中点,CE⊥AD,垂足为E,BF∥AC交CE的延长线于点F,求证AB垂直平分DF。参考答案一、填空题:1、380;2、240;3、4;4、14;5、680二、选择题:CBCDB三、解答题:1、过A作AN⊥BC于N,证∠D=∠DAM;2、延长FE到G,使EG=EF,连结CG,证△DEF≌△CEG3、连结AD,DF为AB的垂直平分线,AD=BD=,∠B=∠DAB=22.50∴∠ADE=450,AE=AD==6又∵∠C=600∴EC=4、证△ACD≌△CBF6.平行四边形知识考点:理解并掌握平行四边形的判定和性质精典例题:【例1】已知如图:在四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC和AD边上,AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点。分析:构造全等三角形或利用平行四边形的性质来证明BO=DO略证:连结BF、DE在四边形ABCD中,AB=CD,AD=BC∴四边形ABCD是平行四边形∴AD∥BC,AD=BC又∵AF=CE∴FD∥BE,FD=BE∴四边形BEDF是平行四边形∴BO=DO,即点O是BD的中点。【例2】已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是平行四边形。分析:欲证四边形EFGH是平行四边形,根据条件需从边上着手分析,由E、F、G、H分别是各边上的中点,可联想到三角形的中位线定理,连结AC后,EF和GH的关系就明确了,此题也便得证。(证明略)变式1:顺次连结矩形四边中点所得的四边形是菱形。变式2:顺次连结菱形四边中点所得的四边形是矩形。变式3:顺次连结正方形四边中点所得的四边形是正方形。变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。变式5:若AC=BD,AC⊥BD,则四边形EFGH是正方形。变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,求证:EFGH是菱形。变式7:如图:在四边形ABCD中,E为边AB上的一点,△ADE和△BCE都是等边三角形,P、Q、M、N分别是AB、BC、CD、DA边上的中点,求证:四边形PQMN是菱形。探索与创新:【问题】已知如图,在△ABC中,∠C=900,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM和BN相交于P,求∠BPM的度数。分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN。略证:过M作ME∥AN,且ME=AN,连结NE、BE,则四边形AMEN是平行四边形,得NE=AM,ME∥AN,AC⊥BC∴ME⊥BC在△BEM和△AMC中,ME=CM,∠EMB=∠MCA=900,BM=AC∴△BEM≌△AMC∴BE=AM=NE,∠1=∠2,∠3=∠4,∠1+∠3=900∴∠2+∠4=900,且BE=NE∴△BEN是等腰直角三角形∴∠BNE=450∵AM∥NE∴∠BPM=∠BNE=450跟踪训练:一、填空题:1、一个平行四边形的两条对角线的长度分别为5和7,则它的一条边长的取值范围是。2、□ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=。3、已知□ABCD中,AB=2AD,对角线BD⊥AD,则∠BCD的度数是。4、如图:在□ABCD中,AE⊥BD于E,∠EAD=600,AE=2,AC+BD=16,则△BOC的周长为。5、如图:□ABCD的对角线AC、BD相交于O,EF过点O,且EF⊥BC于F,∠1=300,∠2=450,OD=,则AC的长为。6、如图:过□ABCD的顶点B作高BE、BF,已知BF=BE,BC=16,∠EBF=300,则AB=。7、如图所示,□ABCD的周长为30,AE⊥BC于点E,AF⊥CD于点F,且AE∶AF=2∶3,∠C=1200,则平行四边形ABCD的面积为。二、选择题:1、若□ABCD的周长为28,△ABC的周长为17cm,则AC的长为()A、11cmB、5.5cmC、4cmD、3cm2、如图,□ABCD和□EAFC的顶点D、E、F、B在同一条直线上,则下列关系中正确的是()A、DE>BFB、DE=BFC、DE<BFD、DE=FE=BF3、如图,已知M是□ABCD的AB边的中点,CM交BD于E,则图中阴影部分的面积与□ABCD的面积之比是()A、B、C、D、4、如图,□ABCD中,BD=CD,∠C=700,AE⊥BD于E,则∠DAE=()A、200B、250C、300D、3505、在给定的条件中,能作出平行四边形的是()A、以60cm为对角线,20cm、34cm为两条邻边B、以20cm、36cm为对角线,22cm为一条边C、以6cm为一条对角线,3cm、10cm为两条邻边D、以6cm、10cm为对角线,8cm为一条边6、如图,□ABCD中,E、F分别是AD、BC边上的中点,直线CE交BA的延长线于G点,直线DF交AB的延长线于H点,CG、DH交于点O,若□ABCD的面积为4,则=()A、3.5B、4C、4.5D、57、在□ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,如果AE过BC的中点O,则□ABCD的面积等于()A、48B、C、D、三、解答题:1、如图,在□ABCD中,AE⊥BC于E,AF⊥DC于F,∠ADC=600,BE=2,CF=1,连结DE交AF于点P,求EP的长。2、在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且====(>0),阅读下列材料,然后回答下面的问题:如上图,连结BD∵=,=∴EH∥BD,FG∥BD①连结AC,则EF与GH是否一定平行,答:;②当值为时,四边形EFGH是平行四边形;③在②的情形下,对角线AC和BD只需满足条件时,EFGH为矩形;④在②的情形下,对角线AC和BD只需满足条件时,EFGH为菱形;3、已知,在四边形ABCD中,从①AB∥DC;②AB=DC;③AD∥BC;④AD=BC;⑤∠A=∠C;⑥∠B=∠D中取出两个条件加以组合,能推出四边形ABCD是平行四边形的有哪几种情形?请你具体写出这些组合。4、如图,在△ABC中,∠ACB=900,D、F分别为AC、AB的中点,点E在BC的延长线上,∠CDE=∠A。(1)求证:四边形DECF是平行四边形;(2)若,四边形EBFD的周长为22,求DE的长。跟踪训练参考答案一、填空题:1、1<<6;2、9;3、600;4、12;5、8;6、或12.8;7、cm2;二、选择题:DBCABCC三、解答题:1、提示:由∠B=∠ADC=600,BE=2,AE⊥BC可得AB=4,再证DF=DC-CF=3,∴AD=6,EC=BC-BE=4=DC,又∠BCD=1200,∴∠EDC=300,求得∠APE=∠EAP=600,△AEP为等边三角形,EP=AE=。2、①是;②任意正数;③BD⊥AC;④AC=BD3、①和②;③和④;⑤和⑥;①和⑤;①和⑥;③和⑤;③和⑥;②和④;①和③4、(1)证EC∥DF,ED∥CF;(2)DE=57.矩形、菱形知识考点:理解并掌握矩形的判定与性质,并能利用所学知识解决有关问题。精典例题:【例1】如图,已知矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠DAE∶∠BAE=3∶1,求∠EAC的度数。分析:本题充分利用矩形对角线把矩形分成四个等腰三角形的基本图形进行求解。解略,答案450。【例2】如图,已知菱形ABCD的边长为3,延长AB到点E,使BE=2AB,连结EC并延长交AD的延长线于点F,求AF的长。分析:本题利用菱形的性质,结合平行线分线段成比例的性质定理,可使问题得解。解略,答案AF=4.5。【例3】如图,在矩形ABCD中,M是BC上的一动点,DE⊥AM,垂足为E,3AB=2BC,并且AB、BC的长是方程的两根。(1)求的值;(2)当点M离开点B多少时,△ADE的面积是△DEM面积的3倍?请说明理由。分析:用韦达定理建立线段AB、AC与一元二次方程系数的关系,求出。略解:(1)由韦达定理可得AB+BC=,AB·BC=,又由BC=AB可消去AB,得出一个关于的一元二次方程,解得=12,=,因AB+BC=>0,∴>2,故=应舍去。(2)当=12时,AB+BC=10,AB·BC==24,由于AB<BC,所以AB=4,BC=6,由可得AE=3EM=AM。易证△AED∽△MBA得=,设AE=,AM=,则MB=,而AB2+BM2=AM2,故,解得=2,MB==4。即当MB=4时,。评注:本题将几何问题从“形”向“数”转化,这类综合题既有几何证明中的分析和推理,又有代数式的灵活变换、计算,其解题过程层次较多,步骤较复杂,书写过程也要加强训练。探索与创新:【问题一】如图,四边形ABCD中,AB=,BC=,CD=6,且∠ABC=1350,∠BCD=1200,你知道AD的长吗?分析:这个四边形是一个不规则四边形,应将它补割为规则四边形才便于求解。略解:作AE⊥CB的延长线于E,DF⊥BC的延长线于F,再作AG⊥DF于G∵∠ABC=1350,∴∠ABE=450∴△ABE是等腰直角三角形又∵AB=,∴AE=BE=∵∠BCD=1200,∴∠FCD=600∴△DCF是含300的直角三角形∵CD=6,CF=3,DF=∴EF==8由作图知四边形AGFE是矩形∴AG=EF=8,FG=AE=从而DG=DF-FG=在△ADG中,∠AGD=900∴AD====【问题二】把矩形ABCD沿BD折叠至如上图所示的情形,请你猜想四边形ABDE是什么图形,并证明你的猜想。分析与结论:本题根据题设并结合图形猜想该四边形是等腰梯形,利用对称及全等三角形的有关知识易证。跟踪训练:一、填空题:1、若矩形的对称中心到两边的距离差为4,周长为56,则这个矩形的面积为。2、已知菱形的锐角是600,边长是20cm,则较短的对角线长是cm。3、如图,矩形ABCD中,O是对角线的交点,若AE⊥BD于E,且OE∶OD=1∶2,AE=cm,则DE=cm。4、如图,P是矩形ABCD内一点,PA=3,PD=4,PC=5,则PB=。5、如图,在菱形ABCD中,∠B=∠EAF=600,∠BAE=200,则∠CEF=。二、选择题:6、在矩形ABCD的各边AB、BC、CD、DA上分别取点E、F、G、H,使EFGH为矩形,则这样的矩形()A、仅能作一个B、可以作四个C、一般情况下不可作D、可以作无穷多个7、如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有()次平行于AB。A、1B、2C、3D、48、如图,已知矩形纸片ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别是()A、4cm、cmB、5cm、cmC、4cm、cmD、5cm、cm9、给出下面四个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③有一个角是直角且对角线互相平分的四边形是矩形;④菱形的对角线的平方和等于边长平方的4倍。其中正确的命题有()A、①②B、③④C、③D、①②③④10、平行四边形四个内角的平分线,如果能围成一个四边形,那么这个四边形一定是()A、矩形B、菱形C、正方形D、等腰梯形三、解答题:11、如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于点G,DE⊥AG于E,且DE=DC,根据上述条件,请在图中找出一对全等三角形,并证明你的结论。12、如图,在△ABC中,∠ACB=900,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G,求证:四边形GECF是菱形。13、如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF。请回答下列问题(不要求证明):(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?跟踪训练参考答案一、填空题:1、180;2、20cm;3、3;4、;5、200提示:4题过点P作矩形任一边的垂线,利用勾股定理求解;5题连结AC,证△ABE≌△ACF得AE=AF,从而△AEF是等边三角形。二、DDBBA三、解答题:11、可证△DEA≌△ABF12、略证:AE平分∠BAC,且EG⊥AB,EC⊥AC,故EG=EC,易得∠AEC=∠CEF,∵CF=EC,EG=CF,又因EG⊥AB,CD⊥AB,故EG∥CF。四边形GECF是平行四边形,又因EG=FG,故GECF是菱形。13、(1)平行四边形;(2)∠BAC=1500;(3)当∠BAC=600时,以A、D、E、F为顶点的四边形不存在。8.正方形知识考点:理解正方形的性质和判定,并能利用它进行有关的证明和计算。精典例题:【例1】如图,E、F分别是正方形ABCD的边AB、BC上的点,且EF∥AC,在DA的延长线上取一点G,使AG=AD,EG与DF相交于点H。求证:AH=AD。分析:因为A是DG的中点,故在△DGH中,若AH=AD,当且仅当△DGH为直角三角形,所以只须证明△DGH为直角三角形(证明略)。评注:正方形除了具备平行四边形的一般性质外,还特别注意其直角的条件。本例中直角三角形的中线性质使本题证明简单。【例2】如图,在正方形ABCD中,P、Q分别是BC、CD上的点,若∠PAQ=450,求证:PB+DQ=PQ。分析:利用正方形的性质,通过构造全等三角形来证明。变式:若条件改为PQ=PB+DQ,那么∠PAQ=?你还能得到哪些结论?探索与创新:【问题一】如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过A作AG⊥EB于G,AG交BD于点F,则OE=OF,对上述命题,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,说明理由。分析:对于图1通过全等三角形证明OE=OF,这种证法是否能应用到图2的情境中去,从而作出正确的判断。结论:(2)的结论“OE=OF”仍然成立。提示:只须证明△AOF≌△BOE即可。评注:本题以正方形为背景,突破了单纯的计算与证明,着重考查了学生观察、分析、判断等多种能力。【问题二】操作,将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑行,直角的一边始终经过点B,另一边与射线DC相交于点Q。探究:设A、P两点间的距离为。(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的关系?试证明你观察得到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为,求与之间的函数关系式,并写出函数的定义域;(3)当点P在线段AC上滑行时,△PCQ是否可能成为等腰三角形,如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的值;如果不可能,请说明理由(题目中的图形形状大小都相同,供操作用)。分析:(1)实验猜测:PQ=PB,再利用正方形性质证明;(2)将四边形面积转化为三角形面积求;(3)可能。略解:(1)如图1,易证BP=PD,∠1=∠2,∠PQD=1800-∠PQC=∠PBC=∠PDQ∴PB=PD=PQ(2)如图2,易证△BOP≌△PEQ∴QE=PO=AO-AP=∴∴(0≤<)(3)△PCQ可能成为等腰三角形。①当点P与点A重合时,点Q与点D重合,这时PQ=QC,△PCQ是等腰三角形,此时=0;②当点Q在边DC的延长线上,且CP=CQ时,△PCQ是等腰三角形(如图3)。此时,QN=PM=,CN=CP=,所以CQ=QN-CN=,当时,解得。评注:本题是一道新颖别致的好题,它考查学生实践操作能力和探究问题的能力。跟踪训练:一、填空题:1、给出下面三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形。其中真命题是(填序号)。2、如图,将正方形ABCD的BC边延长到E,使CE=AC,AE与CD边相交于F点,那么CE∶FC=。3、如图,把正方形ABCD沿着对角线AC的方向移动到正方形的位置,它们的重叠部分的面积是正方形ABCD面积的一半,若AC=,则正方形移动的距离是。4、四边形ABCD的对角线AC、BD相交于点O,给出以下题设条件:①AB=BC=CD=DA;②AO=BO=CO=DO;③AO=CO,BO=DO,AC⊥BD;④AB=BC,CD=DA。其中能判断它是正方形的题设条件是(把正确的序号填在横线上)。二、选择题:1、如图,把正方形ABCD的对角线AC分成段,以每一段为对角线作正方形,设这个小正方形的周长和为,正方形ABCD的周长为,则与的关系式是。A、<B、>C、=D、与无关2、如图,在正方形ABCD中,DE=EC,∠CDE=600,则下列关系式:①∠1∶∠4=4∶1;②∠1∶∠3=1∶1;③(∠1+∠2)∶(∠3+∠4)=5∶3中,正确的是()A、①②③B、仅①C、仅②和③D、仅①和③3、如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的值为()A、10B、11C、12D、154、有若干张如图所示的正方形和长方形纸片,表中所列四种方案能拼成边长为的正方形的是()数量(张)卡片方案(1)(2)(3)A112B111C121D211三、解答题:1、如图,在正方形ABCD中,E是AD的中点,BD与CE交于F点,求证:AF⊥BE。2、已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于N。(1)求证:MD=MN;(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,则结论“MD=MN”还成立吗?如果成立,请证明;如果不成立,请说明理由。3、如图,ABCD是正方形,P是对角线上的一点,引PE⊥BC于E,PF⊥DC于F。求证:(1)AP=EF;(2)AP⊥EF。4、如图,过正方形ABCD的顶点B作BE∥CA,作AE=AC,又CF∥AE,求证:∠BCF=∠AEB。跟踪训练参考答案一、填空题:1、③;2、;3、;4、②二、选择题:CDCA三、解答题:1、易证△ABF≌△CFB和△BAE≌△CDE,由△ABF≌△CFB∠AFB=∠BFC∠FAD=∠DCE;由△BAE≌△CDE∠DCE=∠ABF。所以∠DAF=∠EAB,故∠EHA=∠EAB=900,AF⊥BE。2、(1)如图1,取AD中点F,连结MF,由MN⊥DM得∠DAM=900,易证∠1=∠2,又因∠MNB=∠NBE-∠2=450-∠2,∠DMF=∠AFM-∠1=450-∠1,所以∠DMF=∠MNB,又因DF=BM,所以△DMF≌△MNB,故MD=MN。(2)成立,如图2,在AD上取DF=MB,则易知:∠1=900-∠DMA,又∠2+∠DMA=900,∴∠1=∠2,又∠DMF=450-∠1,∠MNB=450-∠2,∴∠DMF=∠MNB,又DF=MB,∴△DMF≌△MNB,故MD=MN。3、略证:延长AP与EF相交于点H,连结PC,因为BD是对角线,易证PA=PC,∠1=∠2,根据PE⊥BC于E,PF⊥DC于F,知PECF为矩形,PC=EF,且∠DAH=∠FPH,又因为∠1=∠2=∠3,所以在△PHF中,∠FPH+∠3=∠4+∠1=900,所以△PHF为直角三角形,故AP⊥EF。4、提示:证AEFC是菱形,过A点作BE的垂线构造300角的直角三角形。9.梯形知识考点:掌握梯形、直角梯形、等腰梯形的判定和性质,并能熟练解决实际问题。精典例题:【例1】如图,在梯形ABCD中,AB∥DC,中位线EF=7,对角线AC⊥BD,∠BDC=300,求梯形的高AH。分析:根据对角线互相垂直,将对角线平移后可构造直角三角形求解。略解:过A作AM∥BD交CD的延长线于M。∵AB∥DC,∴DM=AB,∠AMC=∠BDC=300又∵中位线EF=7∴CM=CD+DM=CD+AB=2EF=14又∵AC⊥BD,∴AC⊥AM,AC=CM=7∵AH⊥CD,∴∠ACD=600∴AH==评注:平移梯形对角线、平移梯形的腰是解梯形问题时常用的辅助线。【例2】如图,梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,∠B+∠C=900,AD=7,BC=15,求EF的长。分析:将AB、CD平移至E点构成直角三角形即可。答案:EF=4探索与创新:【问题】已知,在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=,BC=。(1)如果点E、F分别为AB、DC的中点,求证:EF∥BC且EF=;(2)如图2,如果,判断EF和BC是否平行?请证明你的结论,并用、、、的代数式表示EF。分析:(2)根据(1)可猜想EF∥BC,连结AF并延长交BC的延长线于点M,利用平行线分线段成比例定理证明即可。略证:连结AF并延长交BC的延长线于点M∵AD∥BM,,∴在△ABM中有∴EF∥BC,∴EF==而,故∴EF===评注:本题是一道探索型试题,其目的是考查学生观察、归纳、抽象、概括、猜想的能力,它要求学生能通过观察进行分析和比较,从特殊到一般去发现规律,并能概括地用数学公式表达出来。跟踪训练:一、填空题:1、梯形的上底长为3,下底长为7,梯形的中位线所分成的上下两部分的面积之比为。2、等腰梯形中,上底∶腰∶下底=1∶2∶3,则下底角的度数是。3、如图,直角梯形ABCD中,AD∥BC,CD=10,∠C=600,则AB的长为。4、如图,梯形ABCD中,AB∥CD,∠D=2∠B,AD=,CD=,那么AB的长是。5、在梯形ABCD中,AD∥BC,AD=2,BC=3,BD=4,AC=3,则梯形ABCD的面积是。6、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,CD=BC,E是BA、CD延长线的交点,∠E=400,则∠ACD=度。二、选择题:1、在课外活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则对角线所用的竹条至少需()A、cmB、30cmC、60cmD、cm2、如图,直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF为梯形的中位线,DH为梯形的高,下列结论:①∠BCD=600;②四边形EHCF是菱形;③④以AB为直径的圆与CD相切于点F。其中正确的结论有()A、1个B、2个C、3个D、4个3、已知如图,梯形ABCD中,AD∥BC,∠B=450,∠C=1200,AB=8,则CD的长为()A、B、C、D、4、如图,在直角梯形ABCD中,底AB=13,CD=8,AD⊥AB,并且AD=12,则A到BC的距离为()A、12B、13C、10D、12×21+135、如图,等腰梯形ABCD中,对角线AC=BC+AD则∠DBC的度数为()A、300B、450C、600D、900三、解答题:1、如图,梯形ABCD中,AD∥BC,AB=DC,在AB、DC上各取一点F、G,使BF=CG,E是AD的中点。求证:∠EFG=∠EGF。2、已知,在等腰△ABC中,AB=AC,AH⊥BC于H,D是底边上任意一点,过D作BC的垂线交AC于M,交BA的延长线于N。求证:DM+DN=2AH。3、如图,等腰梯形ABCD中,AB∥CD,AB=6,CD=2,延长BD到E,使DE=DB,作EF⊥BA的延长线于点F,求AF的长。4、如图,等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于点O,∠ACD=600,点S、P、Q分别是OD、OA、BC的中点。(1)求证:△PQS是等边三角形;(2)若AB=8,CD=6,求的值。(3)若∶=4∶5,求CD∶AB的值。5、如图,直角坐标系内的梯形AOBC,AC∥OB,AC、OB的长分别是关于的方程的两根,并且∶=1∶5。(1)求AC、OB的长;(2)当BC⊥OC时,求OC的长及OC所在的直线解析式;(3)在第(2)问的条件下,线段OC上是否存在一点M,过M点作轴的平行线,交轴于F,交BC于D,过D点作轴的平行线交轴于E,使,若存在,请直接写出M点的坐标;若不存在,请说明理由。跟踪训练参考答案一、填空题:1、2∶3;2、600;3、;4、;5、6;6、150二、选择题:CBAAC三;解答题:1、证△AFE≌△DEG;2、作AH⊥MN于N,则MN=MH,AH=MH+MD易证NH+DM=AH;3、24、(1)连结CS、BP;(2)∵SB=DO+OB=11,CS=,BC==,SQ=,∴=;(3)设CD=,AB=,=。∴=,又∶=∶,则=,∵∶=4∶5,∴。整理得:,,又∵,∴。即:。5、(1)AC=1,OB=5;(2)C(1,2);(3)存在,(,1),(,)10.三角形、梯形的中位线知识考点:掌握三角形、梯形的中位线定理,并会用它们进行有关的论证和计算。精典例题:【例1】如图,梯形ABCD中,AD∥BC,M是腰AB的中点,且AD+BC=DC。求证:MD⊥MC。分析:遇到腰上中点的问题构造梯形中位线可证明,也可以因为腰上有中点,延长DM与CB的延长线交于E点进行证明。【例2】如图,△ABC的三边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,求PM的长。分析:∠A的平分线与BP边上的垂线互相重合,通过作辅助线延长BP交AC于点Q,由△ABP≌△AQP知AB=AQ=14,又知M是BC的中点,所以PM是△BQC的中位线,于是本题得以解决。答案:PM=6探索与创新:【问题一】E、F为凸四边形ABCD的一组对边AD、BC的中点,若EF=,问:ABCD为什么四边形?请说明理由。分析与结论:如图,利用三角形和梯形的中位线定理,连结AC,取AC的中点G,连EG、FG,则EG∥CD,FG∥AB,∴EG+FG=,即EG+FG=EF,则G点在EF上,EF∥CD,EF∥AB,故AB∥CD。(1)若AD∥BC,则凸四边形ABCD为平行四边形;(2)若AD不平行于BC,则凸四边形ABCD为梯形。评注:利用中位线构造出CD、AB,其关键是连AC,并取其中点G。跟踪训练:一、填空题:1、三角形各边长为5、9、12,则连结各边中点所构成的三角形的周长是。2、一个等腰梯形的周长为100cm,如果它的中位线与腰长相等,它的高为20cm,那么这个梯形的面积是。3、若梯形中位线被它的两条对角线分成三等分,则梯形的两底之比为。4、直角梯形的中位线长为,一腰长为,且此腰与底所成的角为600,则这个梯形的面积为。5、如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,G是BC上任意一点,如果cm2,那么梯形ABCD的面积是。6、如图,在梯形ABCD中,AD∥BC,∠B=300,∠C=600,E、F、M、N分别为AB、CD、BC、DA的中点,已知BC=7,MN=3,则EF=。7、如图,D、E、F分别为△ABC三边上的中点,G为AE的中点,BE与DF、DG分别交于P、Q两点,则PQ∶BE=。8、如图,直角梯形ABCD的中位线EF=,垂直于底的腰AB=,则图中阴影部分的面积是。9、在梯形ABCD中,AD∥BC,BD是对角线,EF为中位线,若∶=1∶2,则∶=。二、选择题:1、等腰梯形的两条对角线互相垂直,中位线长为8cm,则它的高为()A、4cmB、cmC、8cmD、cm2、已知等腰梯形ABCD中,BC∥AD,它的中位线长为28cm,周长为104cm,AD比AB少6cm,则AD∶AB∶BC=()A、8∶12∶5B、2∶3∶5C、8∶12∶20D、9∶12∶193、如图,已知△ABC的周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,第2004个三角形的周长为()A、B、C、D、4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,又AB=DC,下列结论:①EFGH为矩形;②FH平分EG于T;③EG⊥FH;④HF平分∠EHG。其中正确的是()A、①和②B、②和③C、①②④D、②③④三、解答题:1、如图,在矩形ABCD中,BC=8cm,AC与BD交于O,M、N分别为OA、OD的中点。(1)求证:四边形BCNM是等腰梯形;(2)求这个等腰梯形的中位线长。2、如图,在四边形ABCD中,AB>CD,E、F分别是对角线BD、AC的中点,求证:EF>3、如图,在等腰梯形ABCD中,AB∥DC,∠ABC=600,AC平分∠DAB,E、F是对角线AC、BD的中点,且EF=,求梯形ABCD的面积。跟踪训练参考答案一、填空题:1、13;2、500cm2;3、1∶2;4、;5、;6、4;7、1∶4;8、;9、5∶7二、选择题:CDCD三、解答题:1、(1)证MN∥BC且MN≠BC;(2)6cm。2、取BC的中点构造三角形的中位线。3、解:设上底为,下底为,高为,由题意知EF=,即,,,所以:梯形ABCD的面积为:11.锐角三角函数知识考点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin、cos、tan、cot准确表示出直角三角形中两边的比(为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。精典例题:【例1】在Rt△ABC中,∠C=900,AC=12,BC=15。(1)求AB的长;(2)求sinA、cosA的值;(3)求的值;(4)比较sinA、cosB的大小。分析:在Rt△ABC中,已知两直角边长求斜边长可应用勾股定理,再利用两直角边长与斜边长的比分别求出sinA、cosA的大小,从而便可以计算出的大小,即可比较sinA与cosB的大小。答案:(1)AB=13;(2)sinA=,cosA=;(3);(4)sinA=cosB变式:(1)在Rt△ABC中,∠C=900,,,则sinA=。(2)在Rt△ABC中,∠A=900,如果BC=10,sinB=0.6,那么AC=。答案:(1);(2)6【例2】计算:解:原式===2注意:熟记00、300、450、600、900角的三角函数值,并能熟练进行运算。【例3】已知,在Rt△ABC中,∠C=900,,那么cosA()A、B、C、D、分析:由三角函数的定义知:,又因为,所以可设,,由勾股定理得,不难求出答案:B变式:已知为锐角,且,则=。略解:可设为Rt△ABC的一锐角,∠A=,∠C=900∴AC=,AB=,则BC=∴评注:直角三角形中,只要知道其中任意两边的比,可通过勾股定理求出第三边,然后应用锐角三角函数的定义求锐角三角函数值。【例4】已知,为锐角,则=。分析:由定义可推出∴评注:由锐角三角函数定义不难推出,,它们是中考中常用的“等式”。探索与创新:【问题】已知,则=。分析:在00~900范围内,sin、tan是随的增大而增大;cos、cot是随的增大而减小。∴cos-cos<0,又不难知道cos300=,cos00=1,∴<0,>0。∴原式==变式:若太阳光线与地面成角,300<<450,一棵树的影子长为10米,则树高的范围是()(取)A、3<<5B、5<<10C、10<<15D、>15略解:∵300<<450∴tan300<<tan450而∴∴5.7<<10答案:B跟踪训练:一、选择题:1、在Rt△ABC中,∠C=900,若,则sinA=()A、B、C、D、2、已知cos<0.5,那么锐角的取值范围是()A、600<<900B、00<<600C、300<<900D、00<<3003、若,则锐角的度数是()A、200B、300C、400D、5004、在Rt△ABC中,∠C=900,下列式子不一定成立的是()A、cosA=cosBB、cosA=sinBC、cotA=tanBD、5、在Rt△ABC中,∠C=900,,AC=6,则BC的长为()A、6B、5C、4D、26、某人沿倾斜角为的斜坡前进100米,则他上升的最大高度为()A、米B、米C、米D、米7、计算的值是()A、B、C、D、二、填空题:1、若为锐角,化简=。2、已知,则锐角=;若tan=1(00≤≤900)则=。3、计算=。4、在Rt△ABC中,∠C=900,若AC∶AB=1∶3,则cotB=。5、△ABC中,AB=AC=3,BC=2,则cosB=。6、已知,在△ABC中,∠A=600,∠B=450,AC=2,则AB的长为。三、计算与解答题:1、;2、△ABC中,∠A、∠B均为锐角,且,试确定△ABC的形状。3、已知,,求的值。四、探索题:1、△ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论