高中数学25向量内积与二面角计算教案北师大选修21_第1页
高中数学25向量内积与二面角计算教案北师大选修21_第2页
高中数学25向量内积与二面角计算教案北师大选修21_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.5向量的内积与二面角的计算在《高等代数与分析几何》课程第一章向量代数的教课中,讲到几何空间的内积时,有一个例题(见[1],p53)要求证明以下的公式:coscoscossinsincos,(1)此中点O是二面角P-MN-Q的棱MN上的点,OA、OB分别在平面P和平面Q内。AON,BON,AOB。为二面角P-MN-Q(见图1)。图1公式(1)能够利用向量的内积来加以证明:以Q为坐标平面,直线MN为y轴,如图1成立直角坐标系。记xOz平面与平面P的交线为射线,则ODMN,得ODAOD2,DOx,DOz。2分别沿射线OA、OB的方向上作单位向量a,b,则a,b。由计算知a,b的坐标分别为(sincos,cos,sinsin),(sin,cos,0),于是,cosab。abcoscossinsincos|a||b|公式(1)在立体几何计算二面角的平面角时是实用的。我们来介绍以下的两个应用。例1.立方体ABCD-A1B1C1D1的边长为1,E、F、G、H、I分别为A1D1、A1A、A1B1、B1C1、B1B的中点。求面和面的夹角的大小(用反三角函数表示)。EFGGHI解因为图2中所画的两平面和GHI只有一个公共点,没有交线,所以我们能够将EFG该立方体沿AB方向平移1个单位。这样就使平面EFG平移至平面HIG。而就是二面角G-IH-G(见图3)。利用公式(1),只需知道了,和的大小,我们就能求出。图2由已知条件,GHI和HIG均为等边三角形,所以,而3GIG。所以,2图3coscoscossinsincos,23333即01133cos。2222解得cos11,arccos。33自然,在成立了直角坐标系以后,经过计算向量的外积可计算出两平面的法向量,利用法向量相同也可算出夹角来。例2.计算正十二面体的两个相邻面的夹角的大小。解我们知道正十二面体的每个面都是大小相同的正五边形,且在正十二面体的每个顶点上均有3个面环绕。设P和Q是两个相邻的面,MN是它们的交线(如图4),则公式(

1)中的

,,分别为:AMN,

BMN

AMB,所以它们均为正五边形的内角。所以。图4所以,由公式(1)知cos108cos108cos108sin108sin108cos,或coscos108(1cos108)5。sin21085所以,arccos5,或1163354。5假如不使用公式(1),要求出例2中的夹角的大小在计算上要复杂好多。利用例2的结果,我们能够简单地计算出单位棱长正十二面体的体积V。设单位棱长正十二面体的中心为,则该十二面体能够切割成十二个全等的正五棱锥,O每个五棱锥以该多面体的一个面为底面、以O为其极点。设该正五棱锥为,进而可知:V12V。再设的底面积为、高为h,设O为单位边长正五边形(即的底)的中心,、SAB为该五边形的两个相邻的极点,H为AB的中点,|OH|a,则O'AH54,a1tanO'AH1tan54,S5a5tan54。2224仍设为正十二面体两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论