2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)_第1页
2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)_第2页
2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)_第3页
2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)_第4页
2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年福建省三明市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

2.计算sin75°cos15°-cos75°sin15°的值等于()A.0

B.1/2

C.

D.

3.椭圆的焦点坐标是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

4.已知的值()A.

B.

C.

D.

5.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB

6.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2

7.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx

8.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

9.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

10.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3

B.l1丄l2,l2//l3,l1丄l3

C.l1//l2//l3,l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面

11.A.ac<bc

B.ac2<bc2

C.a-c<b-c

D.a2<b2

12.要得到函数y=sin2x的图像,只需将函数:y=cos(2x-π/4)的图像A.向左平移π/8个单位B.向右平移π/8个单位C.向左平移π/4个单位D.向右平移π/4个单位

13.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

14.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

15.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法

16.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4

17.A.B.C.

18.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m

B.若l//α,m⊥l,则m⊥α

C.若l//α,m//α,则l//m

D.若l⊥α,l///β则a⊥β

19.设f(g(π))的值为()A.1B.0C.-1D.π

20.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2

二、填空题(10题)21.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.

22.不等式|x-3|<1的解集是

23.若向量a=(2,-3)与向量b=(-2,m)共线,则m=

24.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.

25.的展开式中,x6的系数是_____.

26.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.

27.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.

28.己知0<a<b<1,则0.2a

0.2b。

29.不等式(x-4)(x+5)>0的解集是

30.

三、计算题(5题)31.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

33.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

35.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

四、简答题(10题)36.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

37.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

38.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

39.已知cos=,,求cos的值.

40.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

41.已知是等差数列的前n项和,若,.求公差d.

42.证明:函数是奇函数

43.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

44.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

45.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

五、证明题(10题)46.

47.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

48.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

49.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

50.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

51.△ABC的三边分别为a,b,c,为且,求证∠C=

52.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

53.若x∈(0,1),求证:log3X3<log3X<X3.

54.己知sin(θ+α)=sin(θ+β),求证:

55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

六、综合题(2题)56.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

参考答案

1.D圆的标准方程.圆的半径r

2.D三角函数的两角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=

3.D

4.A

5.D由,则两者平行。

6.D

7.D

8.A充要条件的判断.若x=1,则x2-1=0成立.x2-1=0,则x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要条件.

9.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

10.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.

11.C

12.B三角函数图像的性质.将函数y=cos(2x-π/4)向右平移π/8个单位,得到y=cos(2(x-π/8)-π/4)=cos(2x-π/2)=sin2x

13.A

14.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

15.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。

16.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.

17.A

18.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C

19.B值的计算.g(π)=0,f(g(π))=f(0)=0

20.C

21.B,

22.

23.3由于两向量共线,所以2m-(-2)(-3)=0,得m=3.

24.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.

25.1890,

26.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.

27.180,

28.>由于函数是减函数,因此左边大于右边。

29.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

30.-1

31.

32.

33.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

34.

35.

36.

37.x-7y+19=0或7x+y-17=0

38.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

39.

40.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

41.根据等差数列前n项和公式得解得:d=4

42.证明:∵∴则,此函数为奇函数

43.

44.

45.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

46.

47.

∴PD//平面ACE.

48.

49.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

50.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

51.

52.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论