




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为()A.60° B.65° C.70° D.75°2.函数的自变量满足≤≤2时,函数值y满足≤≤1,则这个函数肯定不是()A. B. C. D.3.若正多边形的内角和是1080°,则该正多边形的一个外角为()A. B. C. D.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.5.如图,已知点P是∠AOB平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm.若点C是OB上一个动点,则PC的最小值为()cm.A.7 B.6 C.5 D.46.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.7.如图,的周长为,,和相交于点,交于点,则的周长是()A. B. C. D.8.如图,正比例函数和一次函数的图像相交于点.当时,则()A. B. C. D.9.当时,函数的值是()A.-3 B.-5 C.-7 D.-910.如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC边上的一动点,则ΔDNM周长的最小值是()A.3 B.4 C.5 D.611.已知:如图,是正方形内的一点,且,则的度数为()A. B. C. D.12.将一元二次方程-6x-5=0化成=b的形式,则b等于()A.4 B.-4 C.14 D.-14二、填空题(每题4分,共24分)13.如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____14.如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.15.若一组数据1,3,5,,的众数是3,则这组数据的方差为______.16.如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.17.一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.18.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.三、解答题(共78分)19.(8分)如图,中,、两点在对角线上,且.求证:.20.(8分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,(1)求该县教育经费的年平均增长率;(2)若增长率保持不变,预计2015年该县教育经费是多少.21.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.22.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)(2)当t为何值时,四边形PQDC为平行四边形?(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?23.(10分)已知:如图,四边形ABCD是菱形,AB=AD.求证:(1)AB=BC=CD=DA(2)AC⊥DB(3)∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA24.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.25.(12分)如图,在矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,求CF的长.26.已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是______.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.
参考答案一、选择题(每题4分,共48分)1、D【解析】
先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.【详解】解:∵平行四边形ABCD中,∠ABC=75°,∴∠C=105°,又∵AE⊥BC于E,AF⊥CD于F,∴四边形AECF中,∠EAF=360°-180°-105°=75°,故选:D.【点睛】本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.2、A【解析】
把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.【详解】:A、把x=代入可得y=4,把x=2代入可得y=1,故A正确;B、把x=代入可得y=,把x=2代入可得y=1,故B错误;C、把x=代入可得y=,把x=2代入可得y=1,故C错误;D、把x=代入可得y=16,把x=2代入可得y=1,故D错误.故选A.【点睛】此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.3、A【解析】
首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=1080,继而可求得答案.【详解】设这个正多边形的边数为n,∵一个正多边形的内角和为1080°,∴180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角是:360°÷8=45°.故选:A..【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.4、D【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.是中心对称图形,不是轴对称图形,选项不符合题意;
B.是轴对称图形,不是中心对称图形,选项不符合题意;
C.不是中心对称图形,也不是轴对称图形,选项不符合题意;
D.是中心对称图形,也是轴对称图形,选项符合题意,
故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.5、D【解析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而的到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】∵点P是∠AOB平分线上的一点,∴∵PD⊥OA,M是OP的中点,∴∴∵点C是OB上一个动点∴当时,PC的值最小∵OP平分∠AOB,PD⊥OA,∴最小值,故选:D.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.6、C【解析】
根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥BD可说明E0是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE-DE,再利用平行四边形ABCD的周长为16cm可得AB+AD=8cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,OB=OD又∵OE⊥BD∴OE是线段BD的中垂线,∴BE=DE∴AE+ED-AE+BE,∵平行四边形ABCD的周长为16cm∴AB+AD=8cm∴△ABE的周长=AB+AD=AB+AE+BE=8cm.故选:B.【点睛】本题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等,平行四边形的对角线互相平分.8、C【解析】
由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【详解】解:由图象知,当x>3时,y1的图象在y2上方,y2<y1.故答案为:D.【点睛】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.9、C【解析】
将代入函数解析式即可求出.【详解】解:当时,函数,故选C.【点睛】本题考查函数值的意义,将x的值代入函数关系式按照关系式提供的运算计算出y的值即为函数值.10、D【解析】
由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为使DN+MN最小的点,在Rt△BCM中利用勾股定理求出BM的长即可.【详解】解:∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,则BM的长即为DN+MN的最小值,又CM=CD−DM=4−1=3,在Rt△BCM中,BM=CM2故△DMN周长的最小值=5+1=6,故选:D.【点睛】本题考查的是轴对称−最短路线问题及正方形的性质,根据点B与点D关于直线AC对称,可知BM的长即为DN+MN的最小值是解答此题的关键.11、D【解析】
利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.【详解】解:,是等边三角形,,,,,,同理可得,,故选:.【点睛】本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.12、C【解析】
解:因为x2-6x-5=0所以x2-6x=5,配方得x2-6x+9=5+9,所以,所以b=14,故选C.【点睛】本题考查配方法,掌握配方法步骤正确计算是解题关键.二、填空题(每题4分,共24分)13、1【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.【详解】由题意AD=5,平行四边形ABCD的AD边上的高为3,∴S平行四边形ABCD=5×3=1,故答案为:1.【点睛】本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.14、1【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=16-x,
在Rt△AFD′中,(16-x)2=x2+82,
解之得:x=6,
∴AF=AB-FB=16-6=10,故答案为:1.【点睛】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.15、2【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.【详解】解:∵数据1,3,5,x的众数是3,∴x=3,则数据为1、3、3、5,∴这组数据的平均数为:,∴这组数据的方差为:;故答案为:2.【点睛】本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.16、1【解析】
根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵AB∥CD∥EF,,.解得,BD=1,
故答案为:1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、x>1【解析】
利用函数图象,写出直线在直线下方所对应的自变量的范围即可.【详解】解:根据图象得,当x>1时,kx+b<x+a.故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.18、1【解析】
根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.三、解答题(共78分)19、见解析【解析】
证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∴∠ADF=∠CBE.在△ABE和△CDF中∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∵∠AFE=180°-∠AFD,∠CEF=180°-∠CEB,∴∠AFE=∠CEF,∴.【点睛】本题考查了平行四边形的性质,全等三角形和平行线的判定,理解同位角相等两直线平行是解题关键.20、(1)10%;(2)3993万元.【解析】
(1)设平均增长率为x,因为2012年投入3000万元,所以2013年投入3000(1+x)万元,2014年投入万元,然后可得方程,解方程即可;(2)根据(1)中x的值代入3630(1+x)计算即可.【详解】解:(1)设平均增长率为x,根据题意得,,,,所以(舍去),(2)3630(1+10%)=3993(万元)答:年平均增长率为10%,预计2015年教育经费投入为3993万元.【点睛】本题考查一元二次方程的应用,增长率问题.21、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用22、(1)=,=;(2);(3)当或时是等腰三角形.【解析】试题分析:(1)根据AD、BC的值和点Q的速度是1cm/s,点P的速度是2cm/s,直接用t表示出QD、CP的值;(2)四边形是平行四边形,则需,可得方程8-t=10-2t,再解方程即可;(3)分两种情况讨论:①,②,根据这两种情况分别求出t值即可.试题解析:解:(1)=,=;(2)若四边形是平行四边形,则需∴解得(3)①若,如图1,过作于则,∵∴解得②若,如图2,过作于则,即解得综上所述,当或时是等腰三角形考点:四边形、三角形综合题;几何动点问题.23、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】
(1)根据菱形定义:一组邻边相等的平行四边形是菱形即可解答;(2)利用SSS证明△ADO≌△CDO,可得:∠AOD=∠COD,又因为∠AOD+∠COD=180°,所以∠AOD=∠COD=90°即可得出AC⊥DB;(3)由△ADO≌△CDO,再根据全等三角形对应角相等,两直线平行,内错角相等即可解答.【详解】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=CB.又∵AB=AD,∴AB=BC=CD=DA.(2)在△ADO和△CDO中,∵DA=DC,DO=DO,AO=CO,∴△ADO≌△CDO.∴∠AOD=∠COD.∵∠AOD+∠COD=180°,∴∠AOD=∠COD=90°.∴AC⊥DB.(3)∵△ADO≌△CDO,∴∠ADB=∠CDB,∠DAC=∠DCA.∵AB∥CD,AD∥CB,∴∠ADB=∠CBD,∠CDB=∠ABD,∠DAC=∠BCA,∠DCA=∠BAC.∴∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA.【点睛】本题考查平行四边的性质、菱形性质、全等三角形的判定和性质、平行线的性质等,解题关键是熟练掌握以上性质.24、(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=1试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=1考点:1.四边形综合题;2.综合题.25、.【解析】
证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4﹣x,在Rt△CFE中,由勾股定理得出方程(4﹣x)2=x2+22,求出x即可.【详解】∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新教材高中政治 第一单元 生产资料所有制与经济体制 第一课 我国的生产资料所有制 1.2坚持两个毫不动摇教学设计 部编版必修2
- 企业报告与展示方案
- 2024年秋八年级物理上册 第五章 第5节 显微镜和望远镜教学设计 (新版)新人教版
- 3古诗三首《迢迢牵牛星》(教学设计)2023-2024学年统编版语文六年级下册
- 人才中介协议书6篇
- 1 古诗三首 村晚教学设计-2023-2024学年五年级下册语文统编版
- 七年级生物下册 第四单元 生物圈中的人 第一章 人的由来 4.1.2 人的生殖教学设计 新人教版
- 2023三年级数学上册 四 走进新农村-位置与变换 信息窗2 平移和旋转第1课时教学设计 青岛版六三制
- 2024秋八年级英语上册 Unit 5 Do you want to watch a game show Section B (2a-2e)教学设计(新版)人教新目标版
- 原物料管理与生产管理第二章
- 全球及中国水产饲料和水产养殖添加剂行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告(2024-2030)
- 数据挖掘与机器学习全套教学课件
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- 2024年4月自考00158资产评估试题及答案含评分标准
- 哈弗神兽说明书
- 智慧审计大数据云平台整体解决方案
- 2023年河北省高考数学真题试卷及答案
- 2024-2025年上海中考英语真题及答案解析
- 苏教版四年级科学下册单元测试卷及答案(全册)
- 自然地理学-中科院考博重点答案
- 普通高中学业水平合格性考试(会考)语文试题(附答案)
评论
0/150
提交评论