2023届江苏省庙头中学数学八年级第二学期期末达标检测试题含解析_第1页
2023届江苏省庙头中学数学八年级第二学期期末达标检测试题含解析_第2页
2023届江苏省庙头中学数学八年级第二学期期末达标检测试题含解析_第3页
2023届江苏省庙头中学数学八年级第二学期期末达标检测试题含解析_第4页
2023届江苏省庙头中学数学八年级第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:尺码/厘米

23

23.5

24

24.5

25

25.5

26

销售量/双

5

10

22

39

56

43

25

一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()A.平均数 B.中位数 C.众数 D.方差2.一次函数y=x+4的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若二次根式有意义,则的取值范围是()A. B. C. D.4.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.2 D.25.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角6.若,则下列不等式不成立的是().A. B. C. D.7.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,已知B(﹣3,0)、C(2,0),则点D的坐标为()A.(4,5) B.(5,4) C.(5,3) D.(4,3)8.在中,,,,则的长是()A.4 B. C.6 D.9.如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是()A. B. C. D.50°10.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是()A.打六折 B.打七折 C.打八折 D.打九折二、填空题(每小题3分,共24分)11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为______cm.12.如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.13.一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________

尾.14.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.15.一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.16.已知关于的方程,如果设,那么原方程化为关于的方程是____.17.已知,则=______.18.计算:__________.三、解答题(共66分)19.(10分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.20.(6分)如图,过轴正半轴上一点的两条直线,分别交轴于点、两点,其中点的坐标是,点在原点下方,已知.(1)求点的坐标;(2)若的面积为,求直线的解析式.21.(6分)如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:(1)画线段,且使,连接;(2)线段的长为________,的长为________,的长为________;(3)是________三角形,四边形的面积是________;(4)若点为的中点,为,则的度数为________.22.(8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?23.(8分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.24.(8分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.25.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.26.(10分)化简或求值:(1)化简:;(2)先化简,再求值:,其中.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

∵众数是在一组数据中,出现次数最多的数据,体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.故选C.2、D【解析】

根据k,b的符号判断一次函数的图象所经过的象限.【详解】由题意,得:k>0,b>0,故直线经过第一、二、三象限.即不经过第四象限.故选:D.【点睛】考查一次函数的图象与系数的关系.熟练掌握系数与一次函数图象之间的关系是解题的关键.3、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.4、B【解析】

先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.【详解】由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选B.【点睛】本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.5、D【解析】

菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,

且菱形具有平行四边形的全部性质,

故A、B、C选项错误;

对角线平分一组对角的平行四边形是菱形,故D选项正确.

故选D.【点睛】本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.6、D【解析】

试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.故选D.考点:不等式的性质.7、B【解析】

首先根据菱形的性质和点的坐标求出AD=AB=BC=5,再利用勾股定理求出OA的长度,进而得到点D的坐标.【详解】解:∵菱形ABCD的顶点A在y轴上,B(﹣3,0),C(2,0),∴AB=AD=BC,OB=3,OC=2,∴AB=AD=BC=OB+OC=5,∴AD=AB=CD=5,∴OA===4,∴点D的坐标为(5,4).故选:B.【点睛】本题主要考查菱形的性质及勾股定理,掌握菱形的性质和勾股定理是解题的关键.8、C【解析】

根据勾股定理计算即可.【详解】解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b==6,故选C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.9、A【解析】

根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.【详解】∵,∴,∵点D在AC的垂直平分线上,∴AD=CD,∴,∴.故选A.【点睛】本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.10、C【解析】

设超过200元的部分可以享受的优惠是打n折,根据:实际付款金额=500+(商品原价-500)×,列出y关于x的函数关系式,由图象将x=1000、y=900代入求解可得.【详解】设超过500元的部分可以享受的优惠是打n折,根据题意,得:y=500+(x-500)•,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查一次函数的实际应用,理解题意根据相等关系列出实际付款金额y与商品原价x间的函数关系式是解题的关键.二、填空题(每小题3分,共24分)11、3【解析】∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°.∵AE⊥l,CF⊥l,∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.∵∠ABE+∠ABC+∠FBC=180°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC.在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF=2cm,BF=AE=1cm,∴EF=BE+BF=2+1=3cm.故答案为3.12、.【解析】

先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答【详解】菱形的边长为2,,和都为正三角形,,,,而,,;,,,即,为正三角形;设,则,当时,最小,,当与重合时,最大,,.故答案为.【点睛】此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形13、1【解析】

由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.【详解】∵水塘里有鲤鱼、鲢鱼共10000尾,

一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,

∴鲢鱼出现的频率为64%,

∴水塘有鲢鱼有10000×64%=1尾.

故答案是:1.【点睛】考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.14、1.【解析】

首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【详解】解:过A,D作下底BC的垂线,

则BE=CF=(16-10)=3cm,

在直角△ABE中根据勾股定理得到:

AB=CD==5,

所以等腰梯形的周长=10+16+5×2=1cm.

故答案为:1.【点睛】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.15、±6【解析】

先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得,然后解关于a的绝对值方程即可.【详解】解:当y=0时,y=-3x+a=0,解得x=,则直线与x轴的交点坐标为(,0);当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);所以,解得:a=±6.故选答案为:±6.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.16、.【解析】

先根据得到,再代入原方程进行换元即可.【详解】由,可得∴原方程化为3y+故答案为:3y+.【点睛】本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.17、【解析】

已知等式整理表示出a,原式通分并利用同分母分式的加减法则计算,把表示出的a代入计算即可求出值.【详解】解:由=,得到2a=3b,即a=,则原式===.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、8【解析】

利用平方差公式即可解答.【详解】解:原式=11-3=8.【点睛】本题考查平方差公式,熟悉掌握是解题关键.三、解答题(共66分)19、见解析.【解析】

利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴FC=BC=AD=DE,又∵DE∥FC,∴四边形CEDF是平行四边形.【点睛】本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.20、(1)A(2,0);(2)直线解析式.【解析】

(1)利用勾股定理即可解题,(2)根据的面积为,得到,得到C(0,-1),再利用待定系数法即可解题.【详解】(1)∵OB=3,,∠AOB=90°∴OA=2,(勾股定理)∴A(2,0)(2)∵∴BC=4∴C(0,-1)∴设直线解析式y=kx+b(k0)∴,解得∴直线解析式.【点睛】本题考查了一次函数与面积的实际应用,勾股定理的应用,用待定系数法求解函数解析式,中等难度,将面积问题转换成求点的坐标问题是解题关键.21、(1)见解析;(2),,5;(3)直角,10;(4)【解析】

(1)根据题意,画出AD∥BC且使AD=BC,连接CD;(2)在网格中利用直角三角形,先求AC的值,再求出AC的长,CD的长,AD的长;(3)利用勾股定理的逆定理判断直角三角形,再求出四边形ABCD的面积;(4)把问题转化到Rt△ACB中,利用直角三角形斜边上的中线可知BE=AE=EC,根据等腰三角形性质即可解题.【详解】(1)如图所示:AD、CD为所求作(2)根据勾股定理得:故答案为:;;5(3)∵,∴∴是直角三角形,∠ACD=90°∴四边形的面积是:故答案为:直角;10(4)∵,∴四边形ABCD是平行四边形∴AB//CD∴∠BAC=∠ACD=90°在Rt△ACD中,为的中点∴AE=BE=CE,∠ABC+∠ACB=90°∴∠ACB=∠EAC=27°∴∠ABC=63°故答案为:【点睛】本题考查了勾股定理及其逆定理的运用,平行四边形的性质关键是运用网格表示线段的长度.22、E点应建在距A站1千米处.【解析】

关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.【详解】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=12+(25﹣x)2,x=1.故:E点应建在距A站1千米处.【点睛】本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.23、(1)等腰直角三角形;(1)①补全图形;②的形状是等腰三角形,证明见解析.【解析】

(1)由在正方形ABCD中,可得∠ABC=90°,AB=BC,又由点P与点B重合,点M,N分别为BC,AP的中点,易得BN=BM,即可判定△EPN的形状是:等腰直角三角形;(1)①首先根据题意画出图形;②首先在MC上截取MF,使MF=PM,连接AF,易得MN是△APF的中位线,证得∠1=∠1,易证得△ABF≌△DCP(SAS),则可得∠1=∠3,继而证得∠1=∠1,则可判定△EPM的形状是:等腰三角形.【详解】(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点M,N分别为BC,AP的中点,∴当点P与点B重合时,BN=BM,∴当点P与点B重合时,△EPM的形状是:等腰直角三角形;故答案为:等腰直角三角形;(1)补全图形,如图1所示.的形状是等腰三角形.证明:在MC上截取MF,使MF=PM,连结AF,如图1所示.∵N是AP的中点,PM=MF,∴MN是△APF的中位线.∴MN∥AF.∴.=∵M是BC的中点,PM=MF,∴BM+MF=CM+PM.即BF=PC.∵四边形ABCD是正方形,∴,AB=DC.∴△ABF≌△DCP.∴.∴.∴EP=EM.∴△EPM是等腰三角形.【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论