




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC4.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1005.菱形ABCD中,∠A=60°,周长是16,则菱形的面积是().A.16 B.16 C.16 D.86.如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.247.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85 B.86 C.87 D.888.平行四边形具有的特征是()A.四个角都是直角 B.对角线相等C.对角线互相平分 D.四边相等9.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm210.无论k为何值时,直线y=k(x+3)+4都恒过平面内一个定点,这个定点的坐标为()A.(3,4) B.(3,﹣4) C.(﹣3,﹣4) D.(﹣3,4)二、填空题(每小题3分,共24分)11.如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是_____.12.当k=_____时,100x2﹣kxy+49y2是一个完全平方式.13.已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.14.在平面直角坐标系中有两点和点.则这两点之间的距离是________.15.如图,在Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为_____.16.分解因式:3a2﹣12=___.17.若一个三角形的三边长为6,8,10,则最长边上的高是____________.18.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.三、解答题(共66分)19.(10分)如图,直线l在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.(1)求点C的坐标和直线l的解析式(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.20.(6分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.①若是以为直角顶点的等腰直角三角形,求的面积;②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)21.(6分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.22.(8分)在菱形ABCD中,AC是对角线.(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证:∠APD=∠EBC.23.(8分)已知:如图,AM是△ABC的中线,D是线段AM的中点,AM=AC,AE∥BC.求证:四边形EBCA是等腰梯形.24.(8分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高25.(10分)按照下列要求画图并作答:如图,已知.画出BC边上的高线AD;画的对顶角,使点E在AD的延长线上,,点F在CD的延长线上,,连接EF,AF;猜想线段AF与EF的大小关系是:______;直线AC与EF的位置关系是:______.26.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.【详解】解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,∴点P不一定在圆上.故选C.【点睛】考点:点与圆的位置关系;线段垂直平分线的性质.2、C【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故选:C.【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.3、D【解析】
根据平行四边形的判定定理逐个判断即可;1、两组对边分别平行的四边形是平行四边形;2、两组对边分别相等的四边形是平行四边形;3、对角线互相平分的四边形是平行四边形;4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等的四边形是平行四边形.【详解】A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选D.【点评】本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.4、B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:﹣=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5、D【解析】分析:过点D作DE⊥BC于点E,根据菱形的性质以及直角三角形的性质得出DE的长,即可得出菱形的面积.详解:如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴∠ADE=30°,∴AE==2,∴DE=,∴菱形ABCD的面积S=DE×AB=8.故选D.点睛:题主要考查了菱形的面积以及其性质,含30°角的直角三角形的性质,勾股定理,得出DE的长是解题关键.6、D【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】解:∵E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴AD=2EF=2×3=6,∴菱形ABCD的周长=4AD=4×6=1.故选:D.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.7、D【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选D.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.8、C【解析】
根据平行四边形的性质进行选择.【详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【点睛】本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.9、D【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【点睛】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.10、D【解析】
先变式解析式得到k的不定方程x+3)k=y-4,由于k有无数个解,则x+3=0且y-4=0,然后求出x、y的值即可得到定点坐标;【详解】解:∵y=k(x+3)+4,∴(x+3)k=y-4,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴x+3=0且y-4=0,∴x=-3,y=4,∴一次函数y=k(x+3)+4过定点(-3,4);故选D.【点睛】本题主要考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标特征是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
利用平均数的定义,列出方程=6即可求解.【详解】解:根据题意知=6,解得:x=1,故答案为1.【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.12、±1.【解析】
利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2=a2±2ab+b2.【详解】∵100x2﹣kxy+49y2是一个完全平方式,∴k=±1.故答案为:±1.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13、4和1【解析】
设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.【详解】∵平行四边形周长为24,∴相邻两边的和为12,∵相邻两边的差是4,设短边为x,则长边为x+4∴x+4+x=12∴x=4∴两边的长分别为:4,1.故答案为:4和1;【点睛】主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.14、【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】如图,∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故答案为.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15、115【解析】
小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:AC1,正方形BCFG的面积为:BC1;在Rt△ABC中,AB1=AC1+BC1,AB=15,则AC1+BC1=115,即正方形ADEC和正方形BCFG的面积和为115.故答案为115.【点睛】本题考查了勾股定理.关键是根据由勾股定理得AB1=AC1+BC1.注意勾股定理应用的前提条件是在直角三角形中.16、3(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).17、4.1【解析】分析:首先根据勾股定理的逆定理可判定此三角形是直角三角形,再根据三角形的面积公式求得其最长边上的高.详解:∵三角形的三边长分别为6,1,10,符合勾股定理的逆定理62+12=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×1=×10h,解得:h=4.1.故答案为:4.1.点睛:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.18、1.【解析】
如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【详解】如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=1米.故答案为1.【点睛】本题考查了含30度角的直角三角形的边长的性质,牢牢掌握该性质是解答本题的关键.三、解答题(共66分)19、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5【解析】
(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可(3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答【详解】(1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴-3+1=-2,3-2=1,∴C的坐标为(-2,1)设直线l的解析式为y=kx+c,∵点B,C在直线l上代入得解得k=-2,c=-3,∴直线l的解析式为y=-2x-3(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),∴-2-3=-5,1+6=7∴D的坐标为(-5,7)代入y=-2x-3时,左边=右边,即点D在直线l上(3)把B的坐标代入y=x+b得:3=-3+b,解得:b=6∴y=x+6,∴E的坐标为(0,6),∵直线y=-2x-3与y轴交于A点,∴A的坐标为(0,-3)∴AE=6+3=9;∵B(-3,3)∴△ABE的面积为×9×|-3|=13.5【点睛】此题考查一次函数图象与几何变换,利用平移的性质是解题关键20、(1);(2)①或.②1或2.【解析】
(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.【详解】解:(1))∵四边形OACD是正方形,边长为3,
∴点B的纵坐标为3,点E的横坐标为3,
∵反比例函数的图象交AC,CD于点B,E,设的坐标分别为.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函数的解析式为.(2))①如图1中,设直线m交OD于M.由(1)可知B(1,3),AB=1,BC=2,
当PC=PQ,∠CPQ=90°时,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=∴S△PCQ=如图2中,当PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,∴S△PCQ=.所以,的面积为或.②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在点C为等腰三角形的直角顶点,
综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
故答案为1或2.【点睛】本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21、见解析,【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.【详解】证明:由折叠得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.22、(1)24;110°;35°;(2)见解析.【解析】
(1)由菱形的性质可求解;(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.【详解】解:(1)∵四边形ABCD是菱形∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,∠DCA=∠DCB=∠DAB=35°∴菱形ABCD的周长=4×6=24,∠ADC=180°-70°=110°,故答案为:24,110°,35°(2)证明:∵菱形ABCD∴CD//AB,CD=CB,CA平分∠BCD∴∠CDE=∠APD,∠ACD=∠ACB∵CD=CB,∠BCE=∠DCE,CE=CE∴△CBE≌△CDE(SAS)∴∠CBE=∠CDE∴∠CBE=∠APD.【点睛】本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.23、见解析.【解析】
根据三角形判定定理先证明三角形ADE与三角形MDC全等,得出AE=MC=M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品疫苗安全管理制度
- 药品采购议价管理制度
- 药店企业文化管理制度
- 药店异地刷卡管理制度
- 药店设施设备管理制度
- 薪酬发放审批管理制度
- 设备公司销售管理制度
- 设备安装调试管理制度
- 设备机房资料管理制度
- 设备现场工具管理制度
- 市政公用工程设计文件编制深度规定(2013年高清版)
- GB/T 9867-2008硫化橡胶或热塑性橡胶耐磨性能的测定(旋转辊筒式磨耗机法)
- GB/T 19139-2012油井水泥试验方法
- GB/T 18314-2001全球定位系统(GPS)测量规范
- 工贸行业重点可燃性粉尘目录(2022版)
- 铁道概论试题及答案重要
- 空间几何中的平行与垂直 新高考 数学 一轮复习专项提升 精讲精练
- 近代史期末复习试题
- 教学设计 完整版:Summer holiday plans
- 2022年武汉市法院书记员招聘考试题库及答案解析
- DB34-T 4010-2021 水利工程外观质量评定规程-高清现行
评论
0/150
提交评论