广东省东莞中学2023年数学八下期末考试模拟试题含解析_第1页
广东省东莞中学2023年数学八下期末考试模拟试题含解析_第2页
广东省东莞中学2023年数学八下期末考试模拟试题含解析_第3页
广东省东莞中学2023年数学八下期末考试模拟试题含解析_第4页
广东省东莞中学2023年数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.设表示两个数中的最大值,例如:,,则关于的函数可表示为()A. B. C. D.2.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16 B.25 C.144 D.1693.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm4.已知y1x5,y22x1.当y1y2时,x的取值范围是()A.x5 B.x12 C.x6 D.x5.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.7.在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为()A.向左平移了个单位长度 B.向下平移了个单位长度C.横向压缩为原来的一半 D.纵向压缩为原来的一半8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC9.如果把2xyx-y分式中的x、y都扩大到10倍,那么分式的值(A.扩大10倍 B.不变 C.扩大20倍 D.是原来的110.将直线y=x+1向右平移2个单位长度,可得直线的解析式为()A.y=x-3 B.y=x-1 C.y=x+3 D.y=x+1二、填空题(每小题3分,共24分)11.既是矩形又是菱形四边形是________.12.如图,在中,,,平分,点是的中点,若,则的长为__________.13.如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.14.图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.15.已知函数y=2x2-3x+l,当y=1时,x=_____.16.因式分解:____.17.若关于的方程有实数根,则的值可以是_____(写出一个即可)18.如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.三、解答题(共66分)19.(10分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.20.(6分)如图,已知四边形为平行四边形,于点,于点.(1)求证:;(2)若、分别为边、上的点,且,证明:四边形是平行四边形.21.(6分)春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.22.(8分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.23.(8分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.24.(8分)已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.25.(10分)先化简,再求值:,其中26.(10分)(1)在图中以正方形的格点为顶点,画一个三角形,使三角形的边长分别为、2、;(2)求此三角形的面积及最长边上的高.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

由于3x与的大小不能确定,故应分两种情况进行讨论.【详解】当,即时,;

当,即时,.

故选D.

【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.2、B【解析】

两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.【详解】两个阴影正方形的面积和为132-122=25,所以B选项是正确的.【点睛】本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.3、C【解析】

连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.4、C【解析】

由题意得到x-5>2x+1,解不等式即可.【详解】∵y1>y2,∴x−5>2x+1,解得x<−6.故选C.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.5、D【解析】∵0.036>0.035>0.028>0.015,∴丁最稳定,故选D.6、B【解析】

首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<“>”要用空心圆点表示.7、C【解析】∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,∴该正方形在纵向上没有变化.又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.故选C.8、A【解析】

根据菱形的定义和判定定理即可作出判断.【详解】A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90°时,平行四边形ABCD是矩形,故C选项不符合题意;D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,故选A.【点睛】本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.9、A【解析】

利用分式的基本性质即可求出答案.【详解】用10x和10y代替式子中的x和y得:原式=2×10x×10y10x-10y=10×∴分式的值扩大为原来的10倍.选A.【点睛】本题考查了分式的基本性质。10、B【解析】

平移时k的值不变,只有b发生变化,然后根据平移规律求解即可.【详解】解:直线y=x+1向右平移2个长度单位,则平移后所得的函数解析式是:y=x+1-2,即y=x-1.故选:B.【点睛】本题考查一次函数图像的平移.平移后解析式有这样一个规律“左加右减,上加下减”.二、填空题(每小题3分,共24分)11、正方形【解析】

根据正方形的判定定理即可得到结论.【详解】既是矩形又是菱形的四边形是正方形,故答案为正方形.【点睛】本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.12、1【解析】

过点D作DE⊥AB于E,根据直角三角形两锐角互余求出∠A=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出DE,根据角平分线上的点到角的两边距离相等可得CD=DE,根据角平分线的定义求出∠CBD=10°,根据直角三角形10°角所对的直角边等于斜边的一半求出BD,再根据直角三角形斜边上的中线等于斜边的一半求解.【详解】如图,过点D作DE⊥AB于E,

∵∠ACB=90°,∠ABC=60°,

∴∠A=90°-60°=10°,

∴DE=AD=×6=1,

又∵BD平分∠ABC,

∴CD=DE=1,

∵∠ABC=60°,BD平分∠ABC,

∴∠CBD=10°,

∴BD=2CD=2×1=6,

∵P点是BD的中点,

∴CP=BD=×6=1.

故答案为:1.【点睛】此题考查含10度角的直角三角形,角平分线的性质,熟记各性质并作出辅助线是解题的关键.13、【解析】

根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.【详解】将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,故答案为:.【点睛】本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.14、(1);(2)见解析.【解析】

(1)利用等边三角形的性质,解直角三角形即可解决问题.(2)利用数形结合的思想解决问题即可(答案不唯一).【详解】解:(1)AB=2×1×cos30°=,故答案为:.(2)如图②中,△DEF即为所求.【点睛】本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、0或【解析】

把y=1时代入解析式,即可求解.【详解】解:当y=1时,则1=2x2-3x+1,解得:x=0或x=,故答案为0或.【点睛】本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.16、【解析】

先提取4,然后利用平方差公式计算.【详解】原式=4(m2-9)=4(m+3)(m-3),

故答案是:4(m+3)(m-3)【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.17、4【解析】

根据一元二次方程根的情况结合根的判别式得出关于的关系式,然后进一步求解即可.【详解】∵关于的方程有实数根,∴,∴,∴要使原方程有实数根,可取的值为4,故答案为:4.【点睛】本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关概念是解题关键.18、【解析】

结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.【详解】∵四边形ABCD是矩形,

∴AO=BO=CO=DO,

∵AE垂直平分OB于点E,

∴AO=AB=4,

∴AO=OB=AB=4,

∴BD=8,

在Rt△ABD中,AD==.

故答案为:.【点睛】本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.三、解答题(共66分)19、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解析】

(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.

(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.

(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),

令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【点睛】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20、(1)见解析;(2)见解析.【解析】

(1)利用给出的条件证明即可解答.(2)先求出,再利用对边平行且相等的判定定理进行证明即可解答.【详解】(1)四边形是平行四边形,,..于,于,,,,(2)四边形是平行四边形,,,,且,,,且四边形是平行四边形【点睛】本题考查三角形全等的证明和平行四边形的判定,掌握其证明和判定方法是解题关键.21、20元【解析】试题分析:设第一批盒装花每盒的进价为x元,根据第二批所购的盒数是第一批所购花盒数的3倍,每盒花的进价比第一批的进价少6元,列出方程求解即可.解:设第一批盒装花每盒的进价为x元,根据题意列方程得:=,解得:x=20,经检验:x=20是原方程的根;答:第一批盒装花每盒的进价是20元.考点:分式方程的应用.22、(1)y(x>0);(2)答案见解析;(3)8.【解析】

(1)根据平行四边形的面积公式,列出函数关系式即可;(2)利用描点法画出函数图象即可;(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.【详解】(1)由题意,xy=18,所以y(x>0);(2)列表如下:函数图象如图所示:(3)如图作DE⊥BC交BC的延长线于E,∵BC=4,∴DE,∵BD,∴BE6,∴EC=2,∴CD,∴此平行四边形的周长=8.【点睛】本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题23、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)【解析】

(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC,,即可判定为平行四边形;(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.【详解】解:(1)①,②平行四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论