




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若是最简二次根式,则的值可能是()A.-2 B.2 C. D.82.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A. B. C. D.3.在平行四边形ABCD中,若∠B=135°,则∠D=()A.45° B.55° C.135° D.145°4.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象 B.第一、三象限 C.第二、四象限 D.第三、四象限5.设的整数部分是,小数部分是,则的值为().A. B. C. D.6.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.-2 C.4 D.-47.计算的结果是()A.-2 B.2 C.-4 D.48.若kb<0,则一次函数的图象一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限9.估计的结果在().A.8至9之间 B.9至10之间 C.10至11之间 D.11至12之间10.一元一次不等式组的解集为x>a,则a与b的关系为()A.a>b B.a<b C.a≥b D.a≤b二、填空题(每小题3分,共24分)11.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是_____.12.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.13.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180∘到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A'的坐标为______14.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.15.若是的小数部分,则的值是__________.16.根据如图所示的程序,当输入x=3时,输出的结果y=________.17.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.
18.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________
.三、解答题(共66分)19.(10分)解答下列各题:(1)计算:;(2)当时,求代数式的值.20.(6分)如图,已知平行四边形ABCD,(1)=;(用的式子表示)(2)=;(用的式子表示)(3)若AC⊥BD,||=4,||=6,则|+|=.21.(6分)如图,已知点A.B在双曲线y=
(x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.(1)设A的横坐标为m,试用m、k表示B的坐标.(2)试判断四边形ABCD的形状,并说明理由.(3)若△ABP的面积为3,求该双曲线的解析式.22.(8分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.23.(8分)如图,已知直线和上一点,用尺规作的垂线,使它经过点.(保留作图痕迹,不写作法)24.(8分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.(不证明)26.(10分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;(1)甲的射击成绩的平均数和方差分别是多少?(2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
直接利用最简二次根式的定义分析得出答案.【详解】∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中-1,,8都不合题意,∴a的值可能是1.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2、A【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选A.【点睛】本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.3、C【解析】
根据平行四边形的性质解答即可.【详解】解:∵在平行四边形ABCD中,∠B=135°,∴∠D=∠B=135°,
故选:C.【点睛】本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.4、B【解析】
反比例函数的性质:当时,图象位于一、三象限;当时,图象位于二、四象限.【详解】解:∵反比例函数的图象y=过点P(1,3)∴该反比例函数图象位于第一、三象限故选B.【点睛】本题考查反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.5、B【解析】
只需首先对
估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.【详解】解:∵4<5<9,∴1<<2,∴-2<<-1.∴1<<2.∴a=1,∴b=5--1=,∴a-b=1-2+=故选:B.【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.“夹逼法”是估算的一般方法,也是常用方法.6、B【解析】
直接根据正比例函数的性质和待定系数法求解即可.【详解】把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.7、B【解析】
根据(a≥0)可得答案.【详解】解:,故选:B.【点睛】此题主要二次根式的性质,关键是掌握二次根式的基本性质:①≥0;a≥0(双重非负性).②(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③(算术平方根的意义).8、D【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系9、C【解析】
先把无理数式子进行化简,化简到6-3的形式,再根据2.236<,再根据不等式的性质求出6-3的范围.【详解】=,因为4.999696<因为2.236<,所以13.416<6,所以10.416<6.所以10至11之间.故选:C.【点睛】考查了无理数的估值,先求出无理数的范围是关键,在结合不等式的性质就可以求出6-3的范围.10、C【解析】【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.【详解】∵一元一次不等式组的解集是x>a,∴根据不等式解集的确定方法:大大取大,∴a≥b,故选C.【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.二、填空题(每小题3分,共24分)11、5吨【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【点睛】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.12、-1<x<1.【解析】
先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.【详解】解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),∴﹣4=﹣n﹣1,解得n=1,∴P(1,﹣4),又∵y=﹣x﹣1与x轴的交点是(﹣1,0),∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.故答案为﹣1<x<1.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.13、(3,-1)【解析】根据图示可知A点坐标为(-3,-1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,-1),14、1【解析】
由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.【点睛】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.15、1【解析】
先估计的近似值,再求得m,代入计算即可.【详解】∵是的小数部分∴m=-1把m代入得故答案为1.【点睛】此题主要考查了代数式,熟练掌握无理数是解题的关键.16、1【解析】
根据自变量与函数值的对应关系,可得相应的函数值.【详解】当x=3时,y=﹣3+5=1.故答案为:1.【点睛】本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.17、105°【解析】
根据∠1=30°,得∠A1MA+∠DMD1=180°-30°=150°,根据折叠的性质,得∠A1MB=AMB,∠D1MC=∠DMC,从而求解.【详解】由折叠,可知∠A1MB=AMB,∠D1MC=∠DMC.因为∠1=30°,所以∠A1MA+∠DMD1=180°-30°=150°所以∠AMB+∠DMC=∠A1MA+∠DMD1=×150°=75°,所以∠BMC的度数为180°-75°=105°.故答案为:105°【点睛】本题考查的是矩形的折叠问题,理解折叠后的角相等是关键.18、1【解析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,
∴v快=v慢.
设两车相遇的时间为t,
根据函数图象可知:t•v慢=(t-2)•v快=276,
解得:t=6,v慢=46,
∴s=18v慢=18×46=1.
故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.三、解答题(共66分)19、(1)(2)1.【解析】
(1)根据实数的运算法则即可化简;(2)根据整式的运算法则进行化简即可求解.【详解】解:(1)原式.(2)原式,将代入得【点睛】此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.20、【解析】
(1)(2)根据平面向量的加法法则计算即可解决问题;(3)利用勾股定理计算即可;【详解】解:(1)=+=﹣;(2)=+=;(3)∵AC⊥BD,||=4,||=6,∴|+|=2.故答案为﹣,,2【点睛】此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则21、(1)B(2m,);(2)四边形ABCD是菱形,理由见解析;(3)y=.【解析】
(1)根据点P是AC的中点得到点A的横坐标是m,结合反比例函数图象上点的坐标特征来求点B的坐标;(2)根据点P的坐标得到点P是BD的中点,所以由“对角线互相垂直平分的四边形是菱形”得到四边形ABCD是菱形;(3)由△ABP的面积为3,知BP•AP=1.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【详解】(1)∵A的横坐标为m,AC⊥x轴于C,P是AC的中点,∴点B的横坐标是2m.又∵点B在双曲线y=
(x>0)上,∴B(2m,).(2)连接AD、CD、BC;∵AC⊥x轴于C,BD⊥y轴于点D,∴AC⊥BD;∵A(m,),B(2m,),∴P(m,),∴PD=PB,又AP=PC,∴四边形ABCD是菱形;(3)∵△ABP的面积为⋅BP⋅AP=3,∴BP⋅AP=1,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又∵点A.B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC⋅AC=BP⋅2AP=12.∴该双曲线的解析式是:y=.【点睛】此题考查反比例函数综合题,解题关键在于作辅助线.22、AC与EF互相平分,见解析.【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.【详解】AC与EF互相平分∵▱ABCD∴AB∥CD,AB=CD∴∠BAC=∠ACD∵AB=CD,AE=CF,BE=DF∴△ABE≌△CDF∴∠BAE=∠FCD且∠BAC=∠ACD∴∠EAC=∠FCA∴CF∥AE且AE=CF∴四边形AECF是平行四边形∴AC与EF互相平分【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.23、见解析【解析】
根据线段垂直平分线的作法即可得出结论.【详解】解:如图所示.【点睛】本题考查了作图-基本作图,掌握线段垂直平分线的作法是解题的关键.24、(1)EF=BE;(2)EF=BE,理由见解析;(3)当B,E,F在一条直线上时,∠CBE=22.5°【解析】
(1)证明△ECF是等腰直角三角形即可;
(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明BE=DE,△DEF是等腰直角三角形即可;
(3)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明∠CBF=∠CFB即可.【详解】解:(1)如图1中,结论:EF=BE.
理由:
∵四边形ABCD是正方形,
∴BA=BC,∠ABC=∠BCD=90°,∠ACD=∠ACB=45°,
∵AE=EC,
∴BE=AE=EC,
∵CM平分∠DCG,
∴∠DCF=45°,
∴∠ECF=90°,
∵CF=AE,
∴EC=CF,
∴EF=EC,
∴EF=BE.(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.
理由:连接ED,DF.
由正方形的对称性可知,BE=DE,∠CBE=∠CDE
∵正方形ABCD,
∴AB=CD,∠BAC=45°,
∵点F是正方形ABCD外角平分线CM上一点,
∴∠DCF=45°,
∴∠BAC=∠DCF,
由∵CF=AE,
∴△ABE≌△CDF(SAS),
∴BE=DF,∠ABE=∠CDF,
∴DE=DF,
又∵∠ABE+∠CBE=90°,
∴∠CDF+∠CDE=90°,
即∠EDF=90°,
∴△EDF是等腰直角三角形
∴EF=DE,
∴EF=DE.(3)如图3中,当点B,E,F在一条直线上时,∠图形如图2所示:(1)中的结论仍然成立,即EF=BE.CBE=22.5°.
理由:∵∠ECF=∠EDF=90°,
∴E,C,F,D四点共圆,
∴∠BFC=∠CDE,
∵∠ABE=∠ADE,∠ABC=∠ADC=90°,
∴∠CDE=∠CBE,
∴∠CBF=∠CFB,
∵∠FCG=∠CBF+∠CFB=45°,
∴∠CBE=22.5°.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题.25、(1)平行四边形;(2)互相垂直;(3)菱形.【解析】分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业园区污水处理站2025年初步设计评估与污水处理厂运行效率分析报告
- 公共政策影响的测量与评价试题及答案
- 考试全攻略信息系统项目管理师试题及答案
- 西方政治制度下对抗贫困的有效策略探讨试题及答案
- 2025年工业互联网平台数据加密算法效能实证研究综述报告
- 网络工程师能力提升试题及答案
- 宜都七年级语文试卷及答案
- 机电工程的职业发展挑战与试题及答案
- 公共政策与社会文化发展试题及答案
- 着重章节复习2025年信息系统项目管理师试题及答案
- 2025工程建设项目多测合一成果报告书范本
- 麻醉科麻精药品PDCA管理
- 儿童发展问题的咨询与辅导-案例1-5-国开-参考资料
- 2025年河北石家庄市市属国有企业招聘笔试参考题库含答案解析
- 2025年度安徽白帝集团限公司社会招聘高频重点提升(共500题)附带答案详解
- 公益招贴设计课件
- 静脉治疗小组开展工作汇报
- (优化版)高中地理新课程标准【2024年修订版】
- 国家电网公司招聘高校毕业生应聘登记表
- 2024年重庆市中考化学试题(A卷)含答案
- 全国数据应用大赛“数字安全赛”备赛试题及答案
评论
0/150
提交评论