湖北省黄石市江北中学2022-2023学年数学八年级第二学期期末调研模拟试题含解析_第1页
湖北省黄石市江北中学2022-2023学年数学八年级第二学期期末调研模拟试题含解析_第2页
湖北省黄石市江北中学2022-2023学年数学八年级第二学期期末调研模拟试题含解析_第3页
湖北省黄石市江北中学2022-2023学年数学八年级第二学期期末调研模拟试题含解析_第4页
湖北省黄石市江北中学2022-2023学年数学八年级第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,中,垂足为点,若,则的度数是()A. B. C. D.2.关于x的方程mx2+(2m+1)x+m=0,有实数根,则m的取值范围是()A.m>且m≠0 B.m≥ C.m≥且m≠0 D.以上答案都不对3.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个4.将0.000008这个数用科学记数法表示为(

)A.8×10-6 B.8×10-5 C.0.8×10-5 D.8×10-75.已知一次函数与反比例函数的图象相交于,两点,当时,实数的取值范围是()A.或 B.或C.或 D.6.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4407.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.-33C.-7D.78.在下列关于的方程中,是二项方程的是()A. B. C. D.9.一次函数y=kx+b,当k>0,b<0时,它的图象是()A. B. C. D.10.一个正多边形的每一个外角的度数都是60°,则这个多边形的边数是:()A.8 B.7 C.6 D.511.如图,在平行四边形中,,是对角线上不同的两点,连接,,,.下列条件中,不能得出四边形一定是平行四边形的为()A. B.C. D.12.如图,正比例函数的图象与一次函数的图象交于点,若点是直线上的一个动点,则线段长的最小值为()A.1 B. C. D.2二、填空题(每题4分,共24分)13.如果向量,那么四边形的形状可以是_______________(写出一种情况即可)14.某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.15.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.16.若分式方程1x-3-2=k3-x有增根,则17.因式分解:____.18.计算的结果等于__________.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,,,,点P自点A向D以的速度运动,到D点即停止点Q自点C向B以的速度运动,到B点即停止,点P,Q同时出发,设运动时间为.用含t的代数式表示:______;______;______.(2)当t为何值时,四边形APQB是平行四边形?20.(8分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:运往地

车型

甲地(元/辆)

乙地(元/辆)

大货车

720

800

小货车

500

650

(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.21.(8分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.22.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.23.(10分)分解因式(1)(2)24.(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=_____,b=_____.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.25.(12分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.26.某次世界魔方大赛吸引世界各地共900名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到30个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,(1)填空:A区域3×3阶魔方爱好者进入下一轮角逐的有______人.(2)填空:若A区域30名爱好者完成时间为9秒的人数是7秒人数的3倍,①a=______,b=______;②完成时间的平均数是______秒,中位数是______秒,众数是______秒.(3)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的约有多少人?

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据平行四边形性质得出∠B=∠D,根据三角形内角和定理求出∠B即可.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,∴∠AEB=90°.又∠BAE=23°,∴∠B=90°-23°=67°.即∠D=67°.故选:A.【点睛】本题考查了平行四边形的性质,关键是求出∠B的度数.2、B【解析】【分析】分两种情况:m=0时是一元一次方程,一定有实根;m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【详解】当m≠0时,方程为一元二次方程,∵a=m,b=2m+1,c=m且方程有实数根,∴△=b2-4ac=(2m+1)2-4m2≥0,∴m≥且m≠0;当m=0时,方程为一元一次方程x=0,一定有实数根,所以m的取值范围是m≥,故选B.【点睛】本题考查了方程有实数根的情况,考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.进行分类讨论是解题的关键.3、C【解析】

要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.4、A【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.000008用科学计数法表示为8×10-6,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、C【解析】

由函数图像可得y1>y2时,一次函数图象在反比例函数图象的上方,即可确定答案.【详解】解:当,表示一次函数图象在反比例函数图象上方时的取值范围,由题图可知或.故答案为C.【点睛】本题主要考查一次函数和不等式的关系,理解函数图像与不等式解集的关系是解答本题的关键.6、A【解析】

根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.7、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称8、D【解析】

二项方程的左边只有两项,其中一项含未知数x,这项的次数就是方程的次数;另一项是常数项;方程的右边是0,结合选项进行判断即可.【详解】解:A、x3=x即x3-x=0不是二项方程;B、x3=0不是二项方程;C、x4-x2=1,即x4-x2-1=0,不是二项方程;D、81x4-16=0是二项方程;故选:D.【点睛】本题考查了高次方程,掌握方程的项数是解题关键.9、C【解析】试题解析:根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.10、C【解析】分析:正多边形的外角计算公式为:,根据公式即可得出答案.详解:根据题意可得:n=360°÷60°=6,故选C.点睛:本题主要考查的是正多边形的外角计算公式,属于基础题型.明确公式是解决这个问题的关键.11、B【解析】

连接AC与BD相交于O,然后利用平行四边形的性质和三角形全等的性质进行判别即可【详解】如图,连接AC与BD相交于O,在平行四边形ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可A、若BE=DF,则OB-BE=OD-DF,即OE=OF,故选项不符合题意B、若AE=CF,则无法判断OE=OF,故选项符合题意C、AF∥CE能利用角角边证明△AOF和△COE全等,从而得到OE=OF,放选项不符合题意D、∠BAE=∠DCF能够利用角角边证明△ABE和△CDF全等,从而得到DF=BE,然后根据A选项可得OE=OF,故选项不符合题意故答案为:B.【点睛】此题考查平行四边形的性质和全等三角形的性质,解题关键在于作辅助线12、C【解析】

根据垂线段最短可知线段OP的最小值即为点O到直线AB的距离,求出交点坐标及线段AB的长,由三角形面积即能求出点O到直线AB的距离.【详解】解:联立,解得,所以点A的坐标为(2,3)令,解得,所以B(-2,0)过点A作AC垂直于x轴交于点C,过点O作OP垂直于AB,由垂线段最短可知此时OP最小,在中,由A、B坐标可知,根据勾股定理得.即故答案为:C【点睛】本题考查了函数解析式,涉及的知识点包括由解析式求点坐标、三角形面积、勾股定理,由垂线段最短确定OP位置是解题的关键.二、填空题(每题4分,共24分)13、平行四边形【解析】

根据相等向量的定义和四边形的性质解答.【详解】如图:∵=,∴AD∥BC,且AD=BC,∴四边形ABCD的形状可以是平行四边形.故答案为:平行四边形.【点睛】此题考查了平面向量,掌握平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)是解题的关键.14、1.【解析】试题解析:该组的人数是:1222×2.25=1(人).考点:频数与频率.15、【解析】

由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【详解】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,

所以朝上一面的点数不小于3的概率是=,

故答案为:.【点睛】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.16、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘(x-3),得

1-2(x-3)=-k,

∵方程有增根,

∴最简公分母x-3=0,即增根是x=3,

把x=3代入整式方程,得k=-1.

故答案为:-1.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:

①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、【解析】

先提取4,然后利用平方差公式计算.【详解】原式=4(m2-9)=4(m+3)(m-3),

故答案是:4(m+3)(m-3)【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.18、1【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-1=1,故答案为:1.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.三、解答题(共78分)19、(1)t;;;(2)5.【解析】

(1)直接利用P,Q点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t的值.【详解】由题意可得:,,,故答案为t,,;,当时,四边形APQB是平行四边形,,解得:.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.20、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元【解析】

(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得16x+1(18-x)=228,解得x=8,∴18-x=18-8=1.答:大货车用8辆,小货车用1辆.(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,∴w=70a+11220(0≤a≤8且为整数).(3)由16a+1(9-a)≥120,解得a≥2.又∵0≤a≤8,∴2≤a≤8且为整数.∵w=70a+11220,k=70>0,w随a的增大而增大,∴当a=2时,w最小,最小值为W=70×2+11220=3.答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.21、(1)证明见解析(2)1【解析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.22、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.【解析】

(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.【详解】(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23、(1);(2)【解析】

(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.【详解】解:(1)==(2)===【点睛】本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.24、(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析【解析】试题分析:(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.试题解析:(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);∵优秀的有3人,∴a%=3÷30×100%=10%,∴a=10;∵称职的有18人,∴b%=18÷30×100%=60%,∴b=60;(2)由条形统计图可知,这组数据的众数为20;由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,∴这组数据的中位数为21;(3)∵要使一半左右的人获得奖励,∴奖励标准应该以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论