




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.估计的值在()A.2和3之间 B.3和4之间C.4和5之间 D.5和6之间2.在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是()A. B.C. D.3.如图是小军设计的一面彩旗,其中,,点在上,,则的长为()A. B. C. D.4.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.55.如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于()A.8 B.9 C.12 D.136.若关于x的一元二次方程x2+mx+n=0的两个实根分别为5,﹣6,则二次三项式x2+mx+n可分解为()A.(x+5)(x﹣6) B.(x﹣5)(x+6) C.(x+5)(x+6) D.(x﹣5)(x﹣6)7.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.8.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.129.直角三角形中,斜边,,则的长度为()A. B. C. D.10.如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是()A. B.C. D.11.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.1412.若方程有增根,则m的值为()A.2 B.4 C.3 D.-3二、填空题(每题4分,共24分)13.如图,梯形中,,点分别是的中点.已知两底之差是6,两腰之和是12,则的周长是____.14.我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.15.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.16.要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.17.一次函数与轴的交点是__________.18.化简的结果是______三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(8分)如图,点、分别在、上,分别交、于点、,,.(1)求证:四边形是平行四边形;(2)已知,连接,若平分,求的长.21.(8分)已知,如图,,求证:.证明:∵∴________________()∴________________()又∵∴________________()∴()22.(10分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.23.(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.24.(10分)解下列方程:(1);(2).25.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.26.平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点,点,①下列四个点,,,中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由可知,再估计的范围即可.【详解】解:,.故选:C.【点睛】本题考查了实数的估算,熟练的确定一个无理数介于哪两个整数之间是解题的关键.2、A【解析】
确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.【详解】函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,所以一次函数的图象经过一、二、四象限,故选A.【点睛】考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.3、B【解析】
先求出∠ABD=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAC=30°,然后根据30°所对的直角边等于斜边的一半求出BC的长度是2cm,再利用勾股定理解答.【详解】解:如图,∵AD=AB=4cm,∠D=15°,∴∠ABD=∠D=15°,∴∠BAC=∠ABD+∠D=30°,∵∠ACB=90°,AB=4cm,,在Rt△ABC中,,故选:B.【点睛】本题主要考查了含30度角的直角三角形的边的关系,等腰三角形的等边对等角的性质,三角形的外角性质,熟练掌握性质定理是解题的关键.4、C【解析】
由直角三角形的性质可求得DF=BD=AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∵AF⊥BF,D为AB的中点,∴DF=DB=AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE为△ABC的中位线,∴DE=BC=10,∴EF=DE−DF=10−6=4,故选:C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.5、B【解析】
根据三角形中位线的性质及线段的中点性质求解即可.【详解】解:点,,分别是相应边上的中点是三角形ABC的中位线同理可得,四边形的周长故答案为:B【点睛】本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.6、B【解析】
根据题意,把x=5和x=-6分别代入方程,构成含m、n的二元一次方程组,解出m、n的值,然后可得二次三项式,再根据“十字相乘法”因式分解即可.【详解】根据题意可得解得所以二次三项式为x2+x-30因式分解为x2+x-30=(x﹣5)(x+6)故选B.【点睛】此题主要考查了因式分解法解一元二次方程的应用,关键是利用x2+(p+q)x+pq=(x+p)(x+q)进行解答.7、A【解析】
如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.【点睛】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.8、B【解析】
由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.9、A【解析】
根据题意,是直角三角形,利用勾股定理解答即可.【详解】解:根据勾股定理,在中,故选A【点睛】本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.10、D【解析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.【详解】当点E在BC上运动时,三角形的面积不断增大,最大面积=×3××4=3;当点E在DC上运动时,三角形的面积为定值3.当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.11、A【解析】
利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.12、D【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘(x−1),得x=2(x−1)-m,∵原方程有增根,∴最简公分母(x−1)=0,解得x=1,当x=1时,1=2(1−1)-mm=-1.故选:D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题(每题4分,共24分)13、1.【解析】
延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【详解】连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC-DK)=(DC-AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=1.故答案为:1.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14、4.1【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.【详解】解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.15、【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.【点睛】本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.16、丙【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.【详解】解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,故答案为:丙【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、【解析】
根据题目中的解析式,令y=0,求出相应的x的值,即可解答本题.【详解】解:解:∵,∴当y=0时,0=,得x=,∴一次函数的图象与x轴交点坐标是(,0),故答案为:(,0).【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.18、﹣1【解析】分析:直接利用分式加减运算法则计算得出答案.详解:==.故答案为-1.点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.三、解答题(共78分)19、(1),(2),(3)存在,或【解析】
(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】解:(1)∵直线与轴分别交于C、B两点,∴B(0,6),C(-8,0),∵CD=DB,∴D(-4,3).(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.∵C(-8,0),B′(-4,6),∴直线CB′的解析式为,∴P(-2,9),作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.由题意点P向左平移4个单位,向下平移3个单位得到T,∴T(-6,6),∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.∴PD′+D′C′+C′E的最小值为1.(3)如图2中,延长交BK′于J,设BK′交OC于R.∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,所以,所以OR=3,tan∠OBR=,∵∠S′JK′=∠OBR=∠RBC,∴tan∠S′JK′==,∴,∵,∴,所以为的中点,,∴,由旋转的性质可知:,.①当时,设,,解得,所以.②当时,同理则有,整理得:,解得,所以,又因为,,所以直线为,此时在直线上,此时三角形不存在,故舍去.综上所述,满足条件的点N的坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.20、(1)见解析;(2).【解析】
(1)先证得,再利用等量代换证得,证得,即可证明绪论;(2)利用角平分线的定义和平行线的定义可证得,可求得.【详解】(1)∵,∴,,又∵,∴,∴,∴四边形是平行四边形;(2)∵平分,∴,∵,∴,∴,∴,又∵,∴.【点睛】本题考查了平行四边形的判定和性质,角平分线的性质,平行线的性质,熟练掌握平行四边形的判定与性质是解本题的关键.21、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等;;两直线平行,同位角相等.【解析】
根据平行线的性质和判定,还有等量代换可得.【详解】证明:∵∴___DE∥AC_____(内错角相等,两直线平行)∴________________(两直线平行,内错角相等)又∵∴________________(两直线平行,同位角相等)∴(等量代换)【点睛】考核知识点:平行线的判定和性质.理解好判定和性质是关键.22、(1)①详见解析;②45°-α;③,详见解析;(2),或,或【解析】
(1)①由题意补全图形即可;
②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF,
∠DCM=∠BCF,得出MF=即可得出结论;(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1)
③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD是正方形,∴∠ABC=90°,,∴,∵BF⊥DE,∴∠BFE=90°,∴,故答案为:45°-α;③线段BF,CF,DF之间的数量关系是.证明如下:在DF上截取DM=BF,连接CM.如图2所示,∵正方形ABCD,∴BC=CD,∠BDC=∠DBC=45°,∠BCD=90°∴∠CDM=∠CBF=45°-α,∴△CDM≌△CBF(SAS).∴DM=BF,CM=CF,∠DCM=∠BCF.∴∠MCF=∠BCF+∠MCE=∠DCM+∠MCE=∠BCD=90°,∴MF=.∴(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
②当点E在线段BC的延长线上时,BF=DF+,理由如下:
在BF上截取BM=DF,连接CM,如图3所示,同(1)
③,得:△CBM≌△CDF
(SAS),∴CM=CF,
∠BCM=∠DCF.
∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD=
∠
BCD=90°,
∴△CMF是等腰直角三角形,
∴MF=,
∴BF=BM+MF=DF+;③当点E在线段CB的延长线上时,BF+DF=;理由如下:在DF上截取DM=BF,连接CM,如图4所示,
同(1)③得:△CDM≌△CBF,∴CM=CF,∠DCM=∠BCF,
∴∠MCF=∠DCF+
∠MCD=
∠DCF+∠BCF=∠BCD=90°,
∴△CMF是等腰直角三
角形,∴MF=,
即DM+DF=,∴BF+DF=;
综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.23、(1)800;(2)见解析.【解析】
(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算即可得;(2)分两种情况:①当0≤x≤20时,y=y1,②当20<x≤60时,y=y1+y2;并计算分段函数中y≤900时对应的x的取值.【详解】(1)设求原有蓄水量y1(万m3)与时间x(天)的函数关系式y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:,解得,∴y1=﹣20x+1200,当x=20时,y1=﹣20×20+1200=800;(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:,解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,当y≤900时,5x+700≤900,x≤1,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤1.【点睛】本题考查了一次函数的应用,涉及待定系数法求一次函数的解析式、分段函数等,会观察函数图象、熟练掌握待定系数法是解本题的关键.24、(1)x=−4;(2)【解析】
(1)利用解分式方程的一般步骤解出方程;(2)利用配方法解出一元二次方程.【详解】解:(1)方程两边同乘(x−2),得2x+2=x−2解得,x=−4,检验:当x=−4时,x−2=−6≠0,∴x=−4是原方程的解;(2)x2−6x+6=0∴x2−6x=−6∴x2−6x+9=−6+9∴(x−3)2=3∴x−3=解得:.【点睛】本题考查的是分式方程的解法、一元二次方程的解法,掌握解分式方程的一般步骤、配方法解一元二次方程的一般步骤是解题的关键.25、(1)y=﹣x2+x+1;(2)点P的坐标为(1,)或(2,1).【解析】
(1)根据抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P的坐标.【详解】(1)∵抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=-x2+x+1;(2)∵y=-x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=−x+1,设点P的坐标为(p,-p2+p+1),将x=p代入y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论