2022-2023学年山东省威海文登区四校联考中考联考数学试题含解析_第1页
2022-2023学年山东省威海文登区四校联考中考联考数学试题含解析_第2页
2022-2023学年山东省威海文登区四校联考中考联考数学试题含解析_第3页
2022-2023学年山东省威海文登区四校联考中考联考数学试题含解析_第4页
2022-2023学年山东省威海文登区四校联考中考联考数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、402.如图,在边长为6的菱形中,,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是()A. B. C. D.3.已知点,为是反比例函数上一点,当时,m的取值范围是()A. B. C. D.4.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A. B.C. D.5.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.36.下列多边形中,内角和是一个三角形内角和的4倍的是()A.四边形B.五边形C.六边形D.八边形7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15° B.22.5° C.30° D.45°8.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A. B.C. D.9.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C10.如图所示的几何体,它的左视图与俯视图都正确的是()A. B. C. D.11.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)12.的绝对值是()A.8 B.﹣8 C. D.﹣二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.14.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.15.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是

____

.16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.17.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.18.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°20.(6分)已知关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值.21.(6分)解不等式组:,并求出该不等式组所有整数解的和.22.(8分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.(1)已知点A的坐标为,①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.23.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.(10分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.(10分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.26.(12分)计算:(π﹣3.14)0﹣2﹣|﹣3|.27.(12分)如图,在中,,的垂直平分线交于,交于,射线上,并且.()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.2、B【解析】

由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】∵四边形ABCD是菱形,∠DAB=60°,

∴AD=AB=6,∠ADC=180°-60°=120°,

∵DF是菱形的高,

∴DF⊥AB,

∴DF=AD•sin60°=6×=3,

∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×3=18-9π.

故选B.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.3、A【解析】

直接把n的值代入求出m的取值范围.【详解】解:∵点P(m,n),为是反比例函数y=-图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.4、C【解析】

根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.5、C【解析】

过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ,在和中≌AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.6、C【解析】

利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.7、A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.8、B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=.故选A.考点:几何概率.9、C【解析】

根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.10、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.11、D【解析】

先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.12、C【解析】

根据绝对值的计算法则解答.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详解】解:.故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为.故答案为:.【点睛】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.14、(,)【解析】

作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.【详解】如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,

∵A(3,),

∴OC=3,AC=,

∵OB=6,

∴BC=OC=3,

则tan∠ABC==,

由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,

∴==,

设O′D=x,BD=3x,

由O′D2+BD2=O′B2可得(x)2+(3x)2=62,

解得:x=或x=−(舍),

则BD=3x=,O′D=x=,

∴OD=OB+BD=6+=,

∴点O′的坐标为(,).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.15、【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:,故答案为.【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.16、50°.【解析】

解:连接DF,连接AF交CE于G,∵EF为⊙O的切线,∴∠OFE=90°,∵AB为直径,H为CD的中点∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案为:50°.17、60.【解析】

首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.【详解】设半圆的圆心为O,连接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切线,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴点E所对应的量角器上的刻度数是60°,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.18、【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵抛物线开口向下∴a<0∴1-k>0∴k<1.故答案为k<1.点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1+3.【解析】

先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣)﹣2﹣|﹣2|+2tan60°=﹣1+4﹣(2﹣)+2,=﹣1+4﹣2++2,=1+3.【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.20、(1);(2)k=1【解析】

(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.【详解】(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k为正整数,∴k=1,2,1.当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x=0,解得:x=0或x=-2,有一个根为零;当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x+1=0,解得:x=,无整数根;当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x+2=0,解得:x1=x2=-1,有两个非零的整数根.综上所述:k=1.【点睛】本题考查了一元二次方程根的判别式:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(1)△<0⇔方程没有实数根.21、1【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或【解析】

(1)①根据“和谐点”的定义即可解决问题;②首先求出点C坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);②如图2.由图可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.综上所述:直线AC的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F在点E左侧时:连接OD.则OD=,∴.②当点F在点E右侧时:连接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.综上所述:或.【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.23、(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】

(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.24、(1)A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2)A种型号的电风扇最多能采购10台;(3)在(2)的条件下超市不能实现利润为1400元的目标.【解析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论