




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山西省朔州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若f(x)=1/log1/2(2x+1),则f(x)的定义域为()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
2.实数4与16的等比中项为A.-8
B.C.8
3.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
4.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
5.tan960°的值是()A.
B.
C.
D.
6.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
7.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11
8.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
9.己知向量a
=(2,1),b
=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对
10.已知一元二次不等式ax2+bx+1>0的解是<x<,那么()A.
B.
C.
D.
二、填空题(10题)11.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
12.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
13.若长方体的长、宽、高分别为1,2,3,则其对角线长为
。
14.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
15.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.
16.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
17.
18.设A=(-2,3),b=(-4,2),则|a-b|=
。
19.若函数_____.
20.1+3+5+…+(2n-b)=_____.
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
23.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
24.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
25.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
四、简答题(10题)26.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
27.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
28.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
29.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
30.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
31.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
32.解不等式组
33.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
34.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
35.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
五、解答题(10题)36.
37.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
38.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
41.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB
42.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.
43.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.
44.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.
45.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
六、单选题(0题)46.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11
参考答案
1.C函数的定义域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
2.B
3.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}
4.D
5.Atan960°=tan(900°+60°)=tan(5*180°+60°)=tan60°=
6.B圆与圆的位置关系,两圆相交
7.B
8.C
9.C
10.B由一元二次方程得求根公式可知,x1x2=-b/2a/=-1/3,所以b/a=-1/6.
11.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
12.-3或7,
13.
,
14.等腰或者直角三角形,
15.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
16.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
17.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
18.
。a-b=(2,1),所以|a-b|=
19.1,
20.n2,
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
24.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
25.
26.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
27.
28.
29.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
30.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
31.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
32.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
33.
34.(1)-1<x<1(2)奇函数(3)单调递增函数
35.(1)(2)
36.
37.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
38.
39.
40.
41.
42.(1)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,当d=-1时a3=0与a2,a3,a4+1成等比数列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即数列{an}的通项公式an=2n.
43.(1)f(x)=3x2+6ax+b,由题知:
44.(1)如图,在APAD中,因为E,F分别为AP,AD的中点,所以EF//PD又因为EF不包含于平面PCD,PD包含于平面PCD,所以直线EF//平面PCD.(2)因为AB=AD,∠BAD=60°,所以△ABD为正三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国酒杯(酒具)市场运营现状及投资前景规划研究报告
- 2025-2030年中国西乐器制造市场发展状况及前景趋势分析报告
- 岳西事业编招聘年考试真题及答案解析事业单位真题
- 长江大学文理学院《区域分析方法计量地理学》2023-2024学年第二学期期末试卷
- 2025甘肃省建筑安全员《A证》考试题库及答案
- 常州工程职业技术学院《化工环保与安全概论》2023-2024学年第二学期期末试卷
- 石家庄城市经济职业学院《第二语言教学法》2023-2024学年第二学期期末试卷
- 湖南安全技术职业学院《商业伦理与会计职业操守》2023-2024学年第二学期期末试卷
- 汕头大学《财政与金融》2023-2024学年第二学期期末试卷
- 浙江师范大学行知学院《公共部门绩效评估》2023-2024学年第二学期期末试卷
- 《丰收之歌》精选教学课件
- 【青岛版《科学》】四年级下册第一单元1 《运动与力》 教学设计
- 2022春苏教版五年级下册科学全册单元课件全套
- 小学期末班级颁奖典礼动态PPT模板
- 液碱生产工序及生产流程叙述
- 图解调音台使用说明(共14页)
- 人民军队性质宗旨和优良传统教育课件教案
- 心理抗压能力测试例题
- 操作系统试题
- 电子秤校验记录表
- (完整word)外研版八年级下册英语课文电子版
评论
0/150
提交评论