版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
转炉炼钢工艺流程这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。
转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2,MnO,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍与整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。
当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。
随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。
转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成:
(1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;
(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置);
(3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱);
(4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);
(5)倒炉,测温、取样,并确定补吹时间或出钢;
(6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。
上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。
吹炼过程中的供氧强度:
小型转炉为2.5-4.5m3/(t·min);120t以上的转炉一般为2.8-3.6m3/(t·min)。
◆开吹时氧枪枪位采用高枪位,目前是为了早化渣,多去磷,保护炉衬;
◆在吹炼过程中适当降低枪位的保证炉渣不“返干”,不喷溅,快速脱碳与脱硫,熔池均匀升温为原则;
◆在吹炼末期要降枪,主要目的是熔池钢水成分和温度均匀,加强熔池搅拌,稳定火焰,便于判断终点,同时使降低渣中Fe含量,减少铁损,达到溅渣的要求。
◆当吹炼到所炼钢种要求的终点碳范围时,即停吹,倒炉取样,测定钢水温度,取样快速分析[C]、[S]、[P]的含量,当温度和成分符合要求时,就出钢。
◆当钢水流出总量的四分之一时,向钢包中的脱氧合金化剂,进行脱氧,合金化,由此一炉钢冶炼完毕。炼钢学概述
基本要求:理解炼钢的任务;了解对原材料的要求;了解耐火材料的分类和各自用途。
重点与难点:炼钢的任务;原材料主要质量指标;炼钢用耐火材料。
第一节
概述
一、钢与生铁的区别与发展历程:
首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。
在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。
钢的应用前景:钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。
用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求。石油、化工、航天航空、交通运输、农业、国防等许多重要的领域均需要各种类型的大量钢材,我们的日常生活更离不开钢。总之,钢材仍将是21世纪用途最广的结构材料和最主要功能材料。
炼钢方法(1)
最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。
炼钢方法(2)
1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。
炼钢方法(3)
1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。
炼钢方法(4)
1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。
炼钢方法(5)
1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。
炼钢方法(6)
瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(BasicOxygenFurnace)或BOP法,如图1所示。
图1
BOF法
炼钢方法(7)
1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(OxygenBottomMaxhuette)。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP(QuietBOP),如图2所示。
图2
Q-BOP法
炼钢方法(8)
在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。
图3
转炉顶底复合吹炼法
炼钢方法(9)
我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。
图4
全氧侧吹转炉炼钢法
总之,炼钢技术经过200多年的发展,技术水平、自动化程度得到了很大的提高,21世纪炼钢技术会面临更大的挑战,相信会有不断的新技术涌现。
二、我国钢铁工业的状况
我国很早就掌握了炼铁的冶炼技术,东汉时就出现了冶炼和锻造技术,南北朝时期就掌握了灌钢法,曾在世界范围内处于领先地位。但旧中国钢铁工业非常落后,产量很低,从1890年建设的汉阳钢铁厂至1948年的半个世纪中,钢产量累计到200万吨,1949年只有15.8万吨。
新中国成立后,特别是改革开放以来,我国的钢铁事业得到迅速发展,1980年钢产量达到3712万吨,1990年达到6500万吨,1996年首次突破1亿吨大关,成为世界第一产钢大国,2005年产量达到3.4亿吨,占世界产量的1/3。
可以这样讲,我国的钢铁工业对世界产生了重要影响,我国不仅是产钢大国,而且已经开始迈入钢铁强国的行列,如图5所示。
图5
我国粗钢产量的变化情况
第二节炼钢的任务与钢的分类
一、炼钢的任务
炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。
(一)钢中的磷
对于绝大多数钢种来说磷是有害元素。钢中磷的含量高会引起钢的“冷脆”,即从高温降到0℃以下,钢的塑性和冲击韧性降低,并使钢的焊接性能与冷弯性能变差。
磷是降低钢的表面张力的元素,随着磷含量的增加,钢液的表面张力降低显著,从而降低了钢的抗裂性能。
磷是仅次于硫在钢的连铸坯中偏析度高的元素,而且在铁固熔体中扩散速率很小,因而磷的偏析很难消除,从而严重影响钢的性能,所以脱磷是炼钢过程的重要任务之一。磷在钢中是以[Fe3P]或[Fe2P]形式存在,但通常是以[P]来表达。炼钢过程的脱磷反应是在金属液与熔渣界面进行的。
不同用途的钢对磷的含量有严格要求:
非合金钢中普通质量级钢[P]≤0.045%;
优质级钢
[P]≤0.035%;
特殊质量级钢
[P]≤0.025%;
有的甚至要求
[P]≤0.010%。
但对于某些钢种,如炮弹钢,耐腐蚀钢则需添加一定的P元素。
(二)钢中的硫
硫对钢的性能会造成不良影响,钢中硫含量高,会使钢的热加工性能变坏,即造成钢的“热脆”性。
硫在钢中以FeS的形式存在,FeS的熔点为1193℃,Fe与FeS组成的共晶体的熔点只有985℃。液态Fe与FeS虽可以无限互溶,但在固熔体中的溶解度很小,仅为0.015%-0.020%。
当钢中的[S]>0.020%时,由于凝固偏析,Fe-FeS共晶体分布于晶界处,在1150-1200℃的热加工过程中,晶界处的共晶体熔化,钢受压时造成晶界破裂,即发生“热脆”现象。
如果钢中的氧含量较高,FeS与FeO形成的共晶体熔点更低(940℃),更加剧了钢的“热脆”现象的发生。
锰可在钢凝固范围内生成MnS和少量的FeS,纯MnS的熔点为1610℃,共晶体FeS-MnS(占93.5%)的熔点为1164℃,它们能有效地防止钢热加工过程的“热脆”。
冶炼一般钢种时要求将[Mn]控制在0.4%-0.8%。在实际生产中还将[Mn]/[S]比作为一个指标进行控制,[Mn]/[S]对钢的热塑性影响很大。从低碳钢高温下的拉伸实验发现提高[Mn]/[S]比可以提高钢的热延展性。一般[Mn]/[S]≥7时不产生热脆,如图6所示。
图6
[Mn]/[S]比对低碳钢热延展性的影响
硫还会明显降低钢的焊接性能,引起高温龟裂,并在焊缝中产生气孔和疏松,从而降低焊缝的强度。硫含量超过0.06%时,会显著恶化钢的耐蚀性。硫还是连铸坯中偏析最为严重的元素。
不同钢种对硫含量有严格的规定:
非合金钢中普通质量级钢
[S]≤0.045%
优质级钢
[S]≤0.035%,
特殊质量级钢
[S]≤0.025%
有的钢种要求如管线钢
[S]≤0.005%,甚至更低。
对于某些钢种,如易切削钢,硫则作为合金元素加入,要求[S]=0.08%-0.20%。
(三)钢中的氧
在吹炼过程中,向熔池供入了大量的氧气,到吹炼终点时,钢水中含有过量的氧,即钢中实际氧含量高于平均值。
若不脱氧,在出钢、浇铸中,温度降低,氧溶解度降低,促使碳氧反应,钢液剧烈沸腾,使浇铸困难,得不到正确凝固组织结构的连铸坯。
钢中氧含量高,还会产生皮下气泡,疏松等缺陷,并加剧硫的热脆作用。在钢的凝固过程中,氧将会以氧化物的形式大量析出,会降低钢的塑性,冲击韧性等加工性能。
一般测定的是钢中的全氧,即氧化物中的氧和溶解的氧之和,在使用浓差法定氧时才是测定钢液中溶解的氧,在铸坯或钢材中取样时是全氧样。
脱氧的任务:
根据具体的钢种,将钢中的氧含量降低到所需的水平,以保证钢水在凝固时得到合理的凝固组织结构;
使成品钢中非金属夹杂物含量最少,分布合适,形态适宜,以保证钢的各项性能指标,得到细晶结构组织。
常用的脱氧剂有Fe-Mn,Fe-Si,Mn-Si,Ca-Si等合金。
(四)钢中的气体
钢液中的气体会显著降低钢的性能,而且容易造成钢的许多缺陷。钢中气体主要是指氢与氮,它们可以溶解于液态和固态纯铁和钢中。
氢在固态钢中溶解度很小,在钢水凝固和冷却过程中,氢会和CO、N2等气体一起析出,形成皮下气泡中心缩孔、疏松、造成白点和发纹。
钢热加工过程中,钢中含有氢气的气孔会沿加工方向被拉长形成微裂纹,进而引起钢材的强度、塑性、冲击韧性的降低,即发生“氢脆”现象。
在钢材的纵向断面上,呈现出圆形或椭圆形的银白色斑点称之为“白点”,实为交错的细小裂纹。主要原因是钢中的氢在小孔隙中析出的压力和钢相变时产生的组织应力的综合力超过了钢的强度,产生了“白点”。一般白点产生的温度低于2000℃。
钢中的氮是以氮化物的形式存在,它对钢质量的影响体现出双重性。氮含量高的钢种长时间放置,将会变脆,这一现象称为“老化”或“时效”。原因是钢中氮化物的析出速度很慢,逐渐改变着钢的性能。低碳钢产生的脆性比磷还严重。
钢中氮含量高时,在250-4500℃温度范围,其表面发蓝,钢的强度升高,冲击韧性降低,称之为“蓝脆”。氮含量增加,钢的焊接性能变坏。
钢中加入适量的铝,可生成稳定的AlN,能够压抑Fe4N生成和析出,不仅改善钢的时效性,还可以阻止奥氏体晶粒的长大。氮可以作为合金元素起到细化晶粒的作用。在冶炼铬钢,镍铬系钢或铬锰系等高合金钢时,加入适量的氮,能够改善塑性和高温加工性能。
(五)钢中的夹杂
钢中非金属夹杂按来源分可以分成外来夹杂和内生夹杂。
外来夹杂是指冶炼和浇铸过程中,带入钢液中的炉渣和耐火材料以与钢液被大气氧化所形成的氧化物。内生夹杂包括:脱氧时的脱氧产物;钢液温度下降时,硫、氧、氮等杂质元素溶解度下降而以非金属夹杂形式出现的生成物;凝固过程中因溶解度降低、偏析而发生反应的产物;固态钢相变溶解度变化生成的产物。
钢中大部分内生夹杂是在脱氧和凝固过程中产生的。根据成分不同,夹杂物可分为:
氧化物夹杂,即FeO、MnO、SiO2、Al2O3、Cr2O3等简单的氧化物;
FeO-Fe2O3、FeO-Al2O3、MgO-Al2O3等尖晶石类和各种钙铝的复杂氧化物;
2FeO-SiO2、2MnO-SiO2、3MnO-Al2O3-2SiO2等硅酸盐;
硫化物夹杂,如FeS、MnS、CaS等;
氮化物夹杂,如AlN、TiN、ZrN、VN、BN等。
按加工性能,夹杂物可分为:塑性夹杂,它是在热加工时,沿加工方向延伸成条带状;脆性夹杂,它是完全不具有塑性的夹杂物,如尖晶石类型夹杂物,熔点高的氮化物;点状不变性夹杂,如SiO2超过70%的硅酸盐,CaS、钙的铝硅酸盐等。
由于非金属夹杂对钢的性能产生严重的影响,因此在炼钢、精炼和连铸过程应最大限度地降低钢液中夹杂物的含量,控制其形状、尺寸。
(六)钢中的合金成分
碳(C)
炼钢的重要任务之一就是要把熔池中的碳氧化脱除至所炼钢钟的要求。从钢的性质可看出碳也是重要的合金元素,它可以增加钢的强度和硬度,但对韧性产生不利影响。
钢中的碳决定了冶炼、轧制和热处理的温度制度。
碳能显著改变钢的液态和凝固性质,在1600℃,[C]≤0.8%时,每增0.1%的碳
◆钢的熔点降低6.50℃
◆密度减少4kg/m3
◆黏度降低0.7%
◆[N]的溶解度降低0.001%
◆[H]的溶解度降低0.4cm3/100g
◆增大凝固区间17.79℃。
锰(Mn)
锰的作用是消除钢中硫的热脆倾向,改变硫化物的形态和分布以提高钢质;
锰是一种非常弱的脱氧剂,在碳含量非常低、氧含量很高时,可以显示出脱氧作用,协助脱氧,提高他们的脱氧能力;
锰还可以略微提高钢的强度,并可提高钢的淬透性能,稳定并扩大奥氏体区,常作为合金元素生成奥氏体不锈钢、耐热钢等。
硅(Si)
硅是钢中最基本的脱氧剂。普通钢中含硅在0.17%-0.37%,1450℃钢凝固时,能保证钢中与其平衡的氧小于与碳平衡的量,抑制凝固过程中CO气泡的产生。
生产沸腾钢时,[Si]为0.03%-0.07%,[Mn]为0.25%-0.70%,它只能微弱控制C-O反应。
硅能提高钢的机械性能,增加了钢的电阻和导磁性。
硅对钢液的性质影响较大,1600℃纯铁中每增加1%的硅:
◆碳的饱和溶解度降低0.294%
◆铁的熔点降低8℃
◆密度降低80kg/m3
◆[N]的饱和溶解度降低0.003%
◆基本要求:了解转炉的吹炼过程;掌握氧气射流对熔池的物理化学作用;掌握顶吹转炉的各项操作制度;掌握复吹转炉的冶金特点;了解转炉自动控制。
重点与难点:顶吹转炉的各项操作制度;复吹转炉的冶金特点。
第一节炼钢用原材料
原材料是炼钢的基础,原材料的质量和供应条件对炼钢生产的各项技术经济指标产生重要影响。
对炼钢原料的基本要求:既要保证原料具有一定的质量和相对稳定的成分,又要因地制宜充分利用本地区的原料资源,不宜苛求。炼钢原料分为金属料,非金属料和气体。
●金属料:铁水、废钢、合金钢
●非金属料:造渣剂(石灰、萤石、铁矿石)、冷却剂(废钢、铁矿石、氧化铁、烧结矿、球团矿)、增碳剂和燃料(焦炭、石墨籽、煤块、重油)
●氧化剂:氧气、铁矿石、氧化铁皮
入炉原料结构是炼钢进程与各项指标结构产生重要影响:
◆钢铁料结构,即铁水和废钢与废钢种类的合理分配;
◆造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;
◆充分发挥各种炼钢原料的功能使用效果,即钢铁料和选渣料的合理利用。
一、金属料
(一)铁水
铁水是转炉炼钢的主要原材料,一般占装入量的70%-100%,是转炉炼钢的主要热源,如图1所示。
对铁水要求有:
(1)成分;(2)带渣量;(3)温度。
1)硅(Si)
是重要的发热元素,铁水中含Si量高,炉内的化学热增加,铁水中Si量增加0.10%,废钢的加入量可提高1.3%-1.5%。
铁水含Si量高,渣量增加,有利于脱磷、脱硫。
硅含量过高会使渣料和消耗增加,易引起喷溅,金属收得率降低,同时渣中过量的SiO2,也会加剧对炉衬的侵蚀,影响石灰渣化速度,延长吹炼时间。通常铁水中的硅含量为0.30%-0.60%为宜。
2)锰(Mn)
锰是发热元素,铁水中Mn氧化后形成的MnO能有效促进石灰溶解,加快成渣,减少助熔剂的用量和炉衬侵蚀。同时铁水含Mn高,终点钢中余锰高,从而可以减少合金化时所需的锰铁合金,有利提高钢水纯净度。
转炉用铁水对锰与硅比值要求为0.8-1.0,目前使用较多的为低锰铁水,锰的含量为0.20%-0.80%。
3)磷(P)。磷是高发热元素,对一般钢种来说是有害元素,因此要求铁水磷含量越低越好,一般要求铁水[P]≤0.20%。
4)硫(S)。除了含硫易切削以外,绝大多数钢种要求去除硫这一有害元素。氧气转炉单渣操作的脱硫效率只有30%-40%。我国炼钢技术规程要求入炉铁水的硫含量不超过0.05%。
对铁水带渣量的要求:
高炉渣中含硫、SiO2、和Al2O3量较高,过多的高炉渣进入转炉内会导致转炉钢渣量大,石灰消耗增加,造成喷溅,降低炉衬寿命,因此,进入转炉的铁水要求带渣量不得超过0.5%。
对铁水温度的要求:
铁水温度是铁水含物理量多少的标志,铁水物理热得占转炉热收入的50%。应努力保证入炉铁水的温度,保证炉内热源充足和成渣迅速。我国炼钢规定入炉铁水温度应大于1250℃,并且要相对稳定。
转炉和电炉炼钢均使用废钢,如图2所示。氧气顶吹转炉用废钢量一般是总装入量的10%-30%。废钢分为一般废钢、轧辊、次废铁、车等。
(二)转炉炼钢对废钢的要求:
1)废钢的外形尺寸和块度应保证能从炉口顺利加入转炉。废钢的长度应小于转炉口直径的1/2,废钢单重一般不应超过300kg。国标要求废钢的长度不大于1000mm,最大单件重量不大于800kg。
2)废钢中不得混有铁合金,严禁混入铜、锌、铅、锡等有色金属和橡胶,不得混有封闭器皿、爆炸物和易燃易爆品以与有毒物品。废钢的硫、磷含量均不大于0.050%。
3)废钢应清洁干燥不得混有泥沙,水泥,耐火材料,油物等。
4)不同性质的废钢分类存放。
非合金钢、低合金钢废钢可混放在一起,不得混有合金废钢和生铁。合金废钢要单独存放,以免造成冶炼困难,产生熔炼废品或造成贵重合金元素的浪费。
(三)转炉炼钢对铁合金的要求:
1)生铁
主要在电炉炼钢中使用,其主要目的在于提高炉料或钢中的碳含量,并解决废钢或重料来源不足的困难。由于生铁中含碳与杂质较高,因此电炉钢炉料中生铁配比通常为10%-25%,最高不超过30%。
电炉炼钢对生铁的质量要求较高,一般S、P含量要低,Mn不能高于2.5%,Si不能高于1.2%。
2)海绵铁
海绵铁是用氢气或其他还原性气体还原精铁矿而得。一般是将铁矿石装入反应器中,通入氢气或CO气体或使用固体还原剂,在低于铁矿石软化点以下的温度范围内反应,不生成铁水,也没有熔渣,仅把氧化铁中的氧脱掉,从而获得多孔性的金属铁即海绵铁。
海绵铁中金属铁含量较高,S、P含量较低,杂质较少。电炉炼钢直接采用海绵铁代替废钢铁料,不仅可以解决钢铁料供应不足的困难,而且可以大大缩短冶炼时间,提高电炉钢的生产率。此外,以海绵铁为炉料还可以减少钢中的非金属夹杂物与氮含量。由于海绵铁具有较强的吸水能力,因此使用前须保持干燥或以红热状态入炉。
3)铁合金
常用的铁合金种类:
◆简单合金:Fe-Mn,Fe-Si,Fe-Cr,Fe-V,Fe-Ti,Fe-Mo,Fe-W等
◆复合脱氧剂:Ca-Si合金,Al-Mn-Si合金,Mn-Si合金,Cr-Si合金,Ba-Ca-Si合金,Ba-Al-Si合金等
◆纯金属:Mn、Ti(海绵Ti)、Ni、Al。
1)对块要求
加入钢包中的尺寸为5-50mm,加入炉中的尺寸为30-200mm。往电炉中加Al时常将其化成铝饼,用铁杆穿入插入钢液。
2)烘烤温度
锰铁、铬铁、硅铁应≥800℃,烘烤时间应>2小时;钛铁、钒铁、钨铁加热近200℃,时间大于1小时。
二、非金属料
(一)造渣剂
1)石灰
碱性炼钢方法的造渣料,主要成分为CaO,由石灰石煅烧而成,是脱P、脱S不可缺少的材料,用量比较大。
其质量好坏对吹炼工艺、产品质量和炉衬寿命等产生主要影响。因此,石灰CaO含量高,SiO2和S含量低,生过烧率低,活性高,块度适中,此外,石灰还应保持清洁、干燥和新鲜。
对石灰的具体要求:
对转炉石灰块度为20-50mm,电炉为20-60mm
石灰的活度也称水活度是石灰反应能力的标志,也是衡量石灰质量的重要参数。常用盐酸滴定法来测量水活性,当盐酸消耗大于300ml时才属优质活性石灰。通常把在1050-1150℃温度下焙烧的石灰,具有高反应能力的体积密度小,气孔率高,比表面积大,晶粒细小的优质石灰叫活性石灰,也称软性石灰。
活性石灰的水活性度大于310ml,体积密度1.7-2.0g/㎝3,气孔率高达40%,比表面积为0.5-1.3cm2/g。活性石灰能减少石灰、萤石消耗量和转炉渣量,有利于提高脱S,脱P效果,减少转炉热损失和对炉衬的侵蚀。
2)萤石
萤石的主要成分是CaF2,焙烧约930℃。萤石能使CaO和阻碍石灰溶解的2CaO·SiO2外壳的熔点显著降低,生成低熔点3CaO·CaF2·2SiO2(熔点1362℃),加速石灰溶解,迅速改善炉渣动性。
萤石助熔的特点是作用快,时间短。但大量使用萤石会增加喷溅,加剧炉衬侵蚀,污染环境。转炉用萤石要求:
块度在5-50mm,且要干燥,清洁。近年来,萤石供应不足,各钢厂从环保角度考虑,使用多种萤石代用品,如铁锰矿石,氧化铁皮,转炉烟尘,铁矾土等。
3)白云石
白云石的主要成分CaCO3·MgCO3。经焙烧可成为轻烧白云石,其主要成分为CaO·MgO。转炉采用生白云石或轻烧白云石代替部分石灰造渣。可减轻炉渣对炉衬的侵蚀,提高炉衬寿命具有明显效果。
溅渣护炉操作时,通过加入适量的生白云石或轻烧白云石保持渣中的MgO含量达到饱和或过饱和,使终渣能够做黏,出钢后达到溅渣的要求。对生白云石的要求:
4)火砖块
火砖块是浇铸系统的废弃品,它的作用是改善熔渣的流动性,特别是对含MgO高的熔渣,稀释作用优于萤石。火砖块中含有约30%的Al2O3,易使熔渣起泡并具有良好的透气性。但火砖块中还含有55%—70%的SiO2,能大大降低熔渣的碱度与氧化能力,对脱磷、脱硫极为不利。
因此,在电炉炼钢的氧化期应绝对禁用。在还原期要适量少用,只用在冶炼不锈钢或高硫钢时才稍用多一些。
5)合成造渣剂
合成造渣剂是用石灰加入适量的氧化铁皮、萤石、氧化锰或其他氧化物等熔剂,在低温下预制成型。合成渣剂熔点低、碱度高、成分均匀、粒度小,且在高温下易碎裂,成渣速度快,因而改善了冶金效果,减轻了转炉造渣负荷。
高碱度烧结矿或球团矿也可做合成造渣剂使用,其化学成分和物理性能稳定,造渣效果良好。
三、增碳剂
在冶炼过程中,由于配料或装料不当以与脱碳过量等原因,有时造成钢中碳含量没有达到预期的要求,这时要向钢液中增碳。常用的增碳剂有增碳生铁、电极粉、石油焦粉、木炭粉和焦炭粉。
转炉冶炼中,高碳钢种时,使用含杂质很少的石油焦作为增碳剂。对顶吹转炉炼钢用增碳剂的要求是固定碳要高,灰分,挥发分和硫,磷,氮等杂质含量要低,且干燥,干净,粒度适中。其固定碳C≥96%,挥发分≤1.0%,S≤0.5%,水分≤0.5%,粒度在1-5mm。
四、氧化剂
氧气是转炉炼钢的主要氧化剂,其纯度达到或超过99.5%,氧气压力要稳定,并脱除水分。铁矿石中铁的氧化物存在形式是Fe2O3、Fe3O4和FeO其氧含量分别是30.06%,27.64%和22.28%。在炼钢温度下,Fe2O3不稳定,在转炉中较少使用。铁矿石作为氧化剂使用要求高(全铁>56%),杂质量少,块度合适。
氧化铁亦称铁磷,是钢坯加热,轧制和连铸过程中产生的氧化壳层,铁量约占70%-75%。氧化铁皮还有助于化渣和冷却作用,使用时应加热烘烤,保持干燥。
思考题
1、转炉和电炉炼钢用的原材料各有哪些?
2、转炉炼钢对铁水成分和温度有何要求?
3、什么是活性石灰,它有哪些特点?
4、萤石在炼钢中起什么作用?
5、什么是合成造渣剂?它有何作用?
第二节氧气转炉炼钢
◆按炉衬耐火材料性质—碱性转炉和酸性转炉;◆按供入氧化性气体种类—空气和氧气转炉;
◆按供气部位—顶吹、底吹、侧吹与复合吹转炉;◆按热量来源—自供热和外加热燃料转炉。
自贝塞麦发明酸性空气底吹转炉炼钢法起,开始了转炉大量生产钢水的历史,如图3所示。上世纪50年代用氧气代替空气炼钢是炼钢史上的一次重大变革,70年代出现的氧气底吹转炉和顶吹复合转炉,是氧气转炉在发展和完善通路上取得的丰硕成果,如图4所示。
图3
自供热转炉的发展演变过程
图4
由传统供热向外加燃料联合供热转炉的发展演变过程
一、吹炼过程元素氧化规律
(一)炉钢吹炼过程和元素的氧化规律
1)冶炼过程概述
从装料到出钢,倒渣,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉和倒渣几个阶段,如图5所示。一炉钢的吹氧时间通常为12-18min,冶炼周期为30min左右。
图5
吹炼一炉钢过程中金属、炉渣成分的变化
上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹4-6分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。吹炼过程中的供氧强度:
小型转炉为2.5-4.5m3/(t·min);120t以上的转炉一般为2.8-3.6m3/(t·min)。
◆开吹时氧枪枪位采用高枪位,目前是为了早化渣,多去磷,保护炉衬;
◆在吹炼过程中适当降低枪位的保证炉渣不“返干”,不喷溅,快速脱碳与脱硫,熔池均匀升温为原则;
◆在吹炼末期要降枪,主要目的是熔池钢水成分和温度均匀,加强熔池搅拌,稳定火焰,便于判断终点,同时使降低渣中Fe含量,减少铁损,达到溅渣的要求。
◆当吹炼到所炼钢种要求的终点碳范围时,即停吹,倒炉取样,测定钢水温度,取样快速分析[C]、[S]、[P]的含量,当温度和成分符合要求时,就出钢。
◆当钢水流出总量的四分之一时,向钢包中的脱氧合金化剂,进行脱氧,合金化,由此一炉钢冶炼完毕。
(1)硅的氧化规律
在吹炼初期,铁水中的[Si]和氧的亲和力大,而且[Si]氧化反应为放热反应,低温下有利于此反应的进行,因此,[Si]在吹炼初期就大量氧化。
[Si]+O2=(SiO2)
(氧气直接氧化)
[Si]+2[O]=(SiO2)
(熔池内反应)
[Si]+(FeO)=(SiO2)+2[Fe]
(界面反应)
2(FeO)+(SiO2)=(2FeO·SiO2)
随着吹炼的进行石灰逐渐溶解,2FeO·SiO2转变为2CaO·SiO2,即SiO2与CaO牢固的结合为稳定的化合物,SiO2活度很低,在碱性渣中FeO的活度较高,这样不仅使[Si]被氧化到很低程度,而且在碳剧烈氧化时,也不会被还原,即使温度超过1530℃,[C]与[O]的亲和力也超过[Si]与[O]的亲和力,终因(CaO)与(SiO2)结合为稳定的2CaO·SiO2,[C]也不能还原(SiO2)。
硅的氧化对熔池温度,熔渣碱度和其他元素的氧化产生影响:
▼[Si]氧化可使熔池温度升高;
▼[Si]氧化后生成(SiO2),降低熔渣碱度,熔渣碱度影响脱磷,脱硫;
▼熔池中[C]的氧化反应只有到[%Si]<0.15时,才能激烈进行。
影响硅氧化规律的主要因素:[Si]与[O]的亲和力,熔池温度,熔渣碱度和FeO活度。
(2)锰的氧化规律
在吹炼初期,[Mn]也迅速氧化,但不如[Si]氧化的快。其反应式可表示为:
[Mn]+[O]=(MnO)
(熔池内反应)
[Mn]+[O2]=(MnO)
(氧气直接氧化反应)
[Mn]+(FeO)=(MnO)+[Fe](界面反应)
(SiO2)+(MnO)=MnO·SiO2
余锰或残锰:
锰的氧化产物是碱性氧化物,在吹炼前期形成(MnO·SiO2)。但随着吹炼的进行和渣中CaO含量的增加,会发生
(MnO·SiO2)+2(CaO)=(2CaO·SiO2)+(MnO)
(MnO)呈自由状态,吹炼后期炉温升高后,(MnO)被还原,即
(MnO)+[C]=[Mn]+[CO]或(MnO)+[Fe]=(FeO)+[Mn]
吹炼终了时,钢中的锰含量也称余锰或残锰。残锰高,可以降低钢中硫的危害,但冶炼工业纯铁,则要求残锰越低越好。
影响残锰的因素:
◆炉温高有利于(MnO)的还原,残锰量高;
◆碱度升高,可提高自由(MnO)浓度,残锰量增加;
◆降低熔渣中(FeO)含量,可提高残锰含量;
◆铁水中锰含量高,单渣操作,钢水残锰也会高些。
(3)碳的氧化规律
影响碳氧化速度的变化规律的主要因素有:熔池温度、熔池金属成分、熔渣中(∑FeO)和炉内搅拌强度。在吹炼的前、中、后期,这些因素是在不断发生变化,从而体现出吹炼各期不同的碳氧化速度,如图6所示。
吹炼前期:熔池平均温度低于1400-1500℃,[Si]、[Mn]含量高且与[O]亲和力均大于[C]-[O]的亲和力,(∑FeO)较高,但化渣、脱碳消耗的(FeO)较少,熔池搅拌、碳的氧化速度不如中期高。
吹炼中期:熔池温度高于1500℃,[Si]、[Mn]含量降低,[P]-[O]亲和力小于[C]-[O]亲和力,碳氧化消耗较多的(FeO),熔渣中(∑FeO)有所降低,熔池搅拌强烈,反应区乳化较好,结果此期的碳氧化速度高。
吹炼后期,熔池温度很高,超过1600℃,[C]含量较低,(∑FeO)增加,熔池搅拌不如中期,碳氧化速度比中期低。
图6
转炉内碳氧反应速度变化
(4)磷的变化规律
磷的变化规律主要表现为吹炼过程中的脱磷速度。脱磷速度的变化规律,主要受熔池温度,熔池中金属[P]含量,熔渣中(∑FeO),熔渣碱度,熔池的搅拌强度或脱碳速率的影响。
表1
顶吹转炉吹炼各期的特点
因素时期
熔池温度
(%∑FeO)
炉渣碱度
降碳速度
前期
较低
较高
低
低于中期
中期
较高
较低
较高
高于初期
后期
高
高
高
低于中期
前期不利于脱磷的因素是炉渣碱度比较低,因此,为与早形成碱度较高的炉渣,是前期脱磷的关键。
中期不利于脱磷的因素是(∑FeO)较低,因此,如何控制渣中(∑FeO)达10%-20%,避免炉渣“返干”是中期脱磷的关键。
后期不利于脱磷的热力学因素是熔池温度高。
(5)硫的变化规律
硫的变化规律也主要表现在吹炼过程中的脱硫速度,脱硫速度变化规律的主要影响因素与脱磷的类似。不同时期,其表现是不相同。
吹炼前期,由于温度和碱度较低,(FeO)较高,渣的流动性差,因此脱硫能力较低,脱硫速度很慢;
吹炼中期,熔池温度逐渐升高,(FeO)比前期有所降低,碱度因大量石灰熔化而增大,熔池乳化比较好,是脱硫的最好时期;
吹炼后期,熔池温度已升至出钢温度,(FeO)回升,比中期高,碱度高熔池搅拌不如中期,因此,脱硫速度低于或稍低于中期。
2)炉渣成分和温度的变化规律
转炉吹炼过程中熔池内的炉渣成分和温度影响着元素的氧化和脱除规律,而元素的氧化和脱除又影响着炉渣成分和熔池温度的变化。
(1)炉渣中(FeO)的变化规律
炉渣中(FeO)的变化取决于它的来源和消耗两方面。(FeO)的来源主要与枪位、加矿量有关,(FeO)的消耗主要与脱碳速度有关。
◆
枪位:枪位低时,高压氧气流股冲击熔池,熔池搅拌剧烈,渣中金属液滴增多,形成渣、金乳浊液,脱碳速度加快,消耗渣中(FeO)降低。枪位高时,脱碳速度低,渣中(FeO)增高。
◆
矿石:渣料中加矿石多,则渣中(FeO)增高。
◆
脱碳速度:脱碳速度高,渣中(FeO)低;脱碳速度低,渣中(FeO)高。
氧气顶吹转炉通过改变枪位可达到化渣、降碳的不同目的,这是它与其他炼钢方法相比,具有操作灵活的特点。
(2)炉渣碱度的变化规律
炉渣碱度的变化规律取决于石灰的熔解、渣中(SiO2)和熔池温度。
吹炼初期,熔池温度不高,渣料中石灰还未大量熔化。吹炼一开始,[Si]迅速氧化,渣中(SiO2)很快提高,有时可达到30%。因此,初期炉渣碱度不高,一般为1.8-2.3,平均为2.0左右。
吹炼中期,熔池的温度比初期提高,促进大量石灰熔化,熔池中[Si]已氧化完了,SiO2来源中断。中期脱磷速度,熔池搅拌均比前期强,这些因素均有利于形成高碱度炉渣。
吹炼后期,熔池的温度比中期进一步提高,接近出钢温度,有利于石灰渣料熔化,在中期炉渣碱度较高的基础上,吹炼后期,仍能得到高碱度,流动性良好发炉渣。
(3)熔池温度的变化规律
熔池温度的变化与熔池的热量来源和热量消耗有关。
吹炼初期,兑入炉内的铁水温度一般为1300℃左右,铁水温度越高,带入炉内的热量就越高,[Si]、[Mn]、[C]、[P]等元素氧化放热,但加入废钢可使兑入的铁水温度降低,加入的渣料在吹炼初期大量吸热。综合作用的结果,吹炼前期终了,熔池温度可升高至1500℃左右。
吹炼中期,熔池中[C]继续大量氧化放热,[P]也继续氧化放热,均使熔池温度提高,可达1500-1550℃以上。
吹炼后期,熔池温度接近出钢温度,可达1650-1680℃左右,具体因钢种、炉子大小而异。在整个一炉钢的吹炼过程中,熔池温度约提高350℃左右。
综上所述,顶吹氧气转炉开吹以后,熔池温度、炉渣成分、金属成分相继发生变化,它们各自的变化又彼此相互影响,形成高温下多相、多组元同时进行的极其复杂的物理化学变化。
冶炼过程概述:从装料到出钢,倒渣,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉和倒渣几个阶段。
炉钢的吹氧时间通常为12-18min,,如图7所示,冶炼周期为30min左右。
图7
炉钢的吹氧
转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成:
(1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;
(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置);
(3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱);
(4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);
(5)倒炉,测温、取样,并确定补吹时间或出钢;
(6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。
上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。
吹炼过程中的供氧强度:
小型转炉为2.5-4.5m3/(t·min);120t以上的转炉一般为2.8-3.6m3/(t·min)。
◆开吹时氧枪枪位采用高枪位,目前是为了早化渣,多去磷,保护炉衬;
◆在吹炼过程中适当降低枪位的保证炉渣不“返干”,不喷溅,快速脱碳与脱硫,熔池均匀升温为原则;
◆在吹炼末期要降枪,主要目的是熔池钢水成分和温度均匀,加强熔池搅拌,稳定火焰,便于判断终点,同时使降低渣中Fe含量,减少铁损,达到溅渣的要求。
◆当吹炼到所炼钢种要求的终点碳范围时,即停吹,倒炉取样,测定钢水温度,取样快速分析[C]、[S]、[P]的含量,当温度和成分符合要求时,就出钢。
◆当钢水流出总量的四分之一时,向钢包中的脱氧合金化剂,进行脱氧,合金化,由此一炉钢冶炼完毕。
o
转炉冶炼五大制度
装料制度
供氧制度
造渣制度
温度制度
终点控制与合金化制度
二、装料制度
(一)装料次序
◆
对使用废钢的转炉,一般先装废钢后装铁水。先加洁净的轻废钢,再加入中型和重型废钢,以保护炉衬不被大块废钢撞伤,而且过重的废钢最好在兑铁水后装入。
◆
为了防止炉衬过分急冷,装完废钢后,应立即兑入铁水。炉役末期,以与废钢装入量比较多的转炉也可以先兑铁水,后加废钢。
(二)装入量
装入量指炼一炉钢时铁水和废钢的装入数量,它是决定转炉产量、炉龄与其他技术经济指标的主要因素之一。装入量中铁水和废钢配比是根据热平衡计算确定。通常,铁水配比为70%-90%,其值取决于铁水温度和成分,炉容比、冶炼钢种、原材料质量和操作水平等。
确定装入量时,考虑的因素:
o
炉容比:它是指转炉内自由空间的容积与金属装入量之比(m3/t),通常在0.7-1.0波动,我国转炉炉容比一般0.75。
o
熔池深度:合适的熔池深度应大于顶枪氧气射流对熔池的最大穿透深度,以保证生产安全,炉底寿命和冶炼效果。
o
炉子附属设备:应与钢包容量、浇注吊车起重能力、转炉倾动力矩大小、连铸机的操作等相适应。
控制装入量的方法。目前国内采用三种即定量装入量、定深装入量和分阶段定量装入法。
◆定量装入量指整个炉役期间,保证金属料装入量不变;
◆定深装入量指整个炉役期间,随着炉子容积的增大依次逐渐增大装入量,保证每炉的金属熔池深度不变;
◆分阶段定量装入法指将整个炉按炉膛的扩大程度划分为若干阶段,每个阶段实行定量装入法。分阶段定量装入法兼有两者的优点,是生产中最常见的装入制度。
表2
国内一些企业顶吹转炉的炉容比
厂名
宝钢
首钢
鞍钢
本钢
攀钢
首钢
太钢
吨位/t
300
210
180
120
120
80
50
炉熔比/m3·t-1
1.05
0.97
0.86
0.91
0.90
0.84
0.97
装料操作:目前,国内的大中型转炉均采用混铁炉(转炉容量的15~20倍)供应铁水,即高炉来的铁水储存在混铁炉中,用时倒入铁水罐天车兑入(解决高炉出铁与转炉用铁不一致的矛盾,同时保证铁水的温度稳定,成分波动小);废钢则是事先按计算值装入料斗,用时天车加入。
为减轻废钢对炉衬的冲击,装料顺序一般是先兑铁水后加废钢,炉役后期尤其如此。兑铁水时,应炉内无渣(否则加石灰)且先慢后快,以防引起剧烈的碳氧反应,将铁水溅出炉外而酿成事故。目前国内各厂普遍采用溅渣护炉技术,因而多为先加废钢后兑铁水,可避免兑铁喷溅。但补炉后的第一炉钢应采用前法,如图8所示。
简述一炉钢的冶炼过程。
图8
吹炼一炉钢过程中金属、炉渣成分的变化
三、供氧制度
供氧制度的主要内容包括确定合理的喷头结构、供氧强度、氧压和枪位控制。供氧是保证杂质去除速度、熔池升温速度、造渣制度、控制喷溅去除钢中气体与夹杂物的关键操作,关系到终点的控制和炉衬的寿命,对一炉钢冶炼的技术经济指标产生重要影响。
1)氧枪
氧枪是转炉供氧的主要设备,它是由喷头、枪身和尾部结构组成。
喷头是用导热性良好的紫铜经锻造和切割加工而成,也有用压力浇铸而成的。喷头的形状有拉瓦尔型、直筒型和螺旋型等。目前应用最多的是多孔的拉瓦尔型喷头。拉瓦尔型喷头是收缩—扩张收缩型喷孔,当出口氧压与进口氧压之比p出/p0<0.528时形成超音速射流,如图9所示。
图9
拉瓦尔型喷孔示意图
2)供氧制度
枪身:它由三层同心套管构成,中心管道氧气,中间管是冷却水的进水通道,外层管是出水通道。喷头与中心套管焊接在一起。
枪尾部:枪尾部接供氧管,进水管和出水管。
o
在顶吹氧气转炉吹炼过程中,特别是吹炼过程剧化的开始阶段,有时炉渣会起泡并从炉口溢出,这就是吹炼过程中发生的典型的乳化和泡沫现象。
o
由于氧射流对熔池的强烈冲击和CO气泡的沸腾作用,使熔池上部金属、熔渣和气体三相剧烈混合,形成了转炉内发达的乳化和泡沫状态,如图10所示。
图10
转炉内的泡沫现象示意图
1-氧枪;2-气-钢-渣乳化相;3-CO气泡;4-金属熔池;5-火点;
6-金属液滴;7-CO气流;8-飞溅出的金属液滴;9-烟尘
乳化(emulsification)是指金属液滴或气泡弥散在炉渣中,若液滴或气泡数量较少而且在炉渣中自由运动,这种现象称为渣钢乳化或渣气乳化。
若炉渣中仅有气泡,而且气泡无法自由运动,这种现象称炉渣泡沫化(slagfoaming)。由于渣滴或气泡也能进入到金属熔体中,因此转炉中还存在金属熔体中的乳化体系。渣钢乳化是冲击坑上沿流动的钢液被射流撕裂或金属滴所造成的。通过对230tLD转炉乳液取样分析,发现其中金属液滴比例很大:吹氧6-7min时占45%-80%;10-12min时占40%-70%;15-17min时占30%-60%。可见,吹炼时金属和炉渣密切相混。
研究表明,金属液滴比金属熔池的脱碳、脱磷、脱锰更有效。金属液滴尺寸愈小,脱除量愈多。而金属液滴的含硫量比金属熔池的含硫量高,金属液滴尺寸愈小,含硫量愈大。生产实践表明,冶炼中期硬吹时,由于渣内富有大量CO气泡以与渣中氧化铁被金属液滴中的碳所还原,导致炉渣的液态部分消失而“返干”。
软吹时,由于渣中(FeO)含量增加,并且氧化位(即Fe3+/Fe2+)升高,持续时间过长就会产生大量起泡沫的乳化液,乳化的金属量非常大,生成大量气体,容易发生大喷或溢渣。因此,必须正确调整枪位和供氧量,使乳化液中是金属保持某一百分比。
◆供氧压力:
保证射流出口速度达到超音速,并使喷头出口处氧压稍高于炉膛内炉气压力。对三孔喷头,供氧压力可由下式经验计算:
◆氧气流量:指在单位时间内向熔池供氧的数量,常用标准状态下体积量度,其单位为m3/min或m3/h。
氧气流量是根据吹炼每吨金属料所需要的氧气量、金属装入量、供氧时间等因素决定。即
◆供氧强度:指在单位时间内每吨钢的氧耗量,它的单位是m3/(t·min)。供氧强度的大小根据转炉的公称吨位、炉容比来确定。小型转炉的供氧强度为2.5-4.5m3/(t·min),120t以上的转炉一般为2.8-3.6m3/(t·min)。
3)供氧操作
供氧操作是指调节氧压或枪位,达到调节氧气流量、喷头出口气流压力与射流与熔池的相互作用程度,以控制化学反应进程的操作。
供氧操作分为恒压变枪、恒枪变压和分阶段恒压变枪几种方法。国内多采用第三种操作法。
枪位与其控制:
所谓枪位,是指氧枪喷头端面距静止液面的距离,常用H表示,单位是m。目前,一炉钢吹炼中的氧枪操作有两种类型,一种是恒压变枪操作,一种是恒枪变压操作。比较而言,恒压变枪操作更为方便、准确、安全,因而国内钢厂普遍采用。
枪位的变化范围和规律:
关于枪位的确定,目前的做法是经验公式计算,实践中修正。一炉钢冶炼中枪位的变化范围可据经验公式确定:
H=(37~46)P×D出
式中:
P—供氧压力,MPa;
D—喷头的出口直径,mm;
H—枪位,mm。
具体操作中,枪位控制通常遵循“高-低-高-低”的原则:
(1)前期高枪位化渣但应防喷溅。吹炼前期,铁水中的硅迅速氧化,渣中的(SiO2)较高而熔池的温度尚低,为了加速头批渣料的熔化(尽早去P并减轻炉衬侵蚀),除加适量萤石或氧化铁皮助熔外应采用较高的枪位,保证渣中的(FeO)达到并维持在25~30%的水平;否则,石灰表面生成C2S外壳,阻碍石灰溶解。当然,枪位亦不可过高,以防发生喷溅,合适的枪位是使液面到达炉口而又不溢出。
(2)中期低枪位脱碳但应防返干。吹炼中期,主要是脱碳,枪位应低些。但此时不仅吹入的氧几乎全部用于碳的氧化,而且渣中的(FeO)也被大量消耗,易出现“返干”现象而影响S、P的去除,故不应太低,使渣中的(FeO)保持在10~15%以上。
(3)后期提枪调渣控终点。吹炼后期,C-O反应已弱,产生喷溅的
可能性不大,此时的基本任务是调好炉渣的氧化性和流动性继续去除硫磷,并准确控制终点碳(较低),因此枪位应适当高些。
(4)终点前点吹破坏泡沫渣。接近终点时,降枪点吹一下,均匀钢液的成分和温度,同时降低炉渣的氧化铁含量并破坏泡沫渣,以提高金属和合金的收得率。
枪位的调节。生产条件千变万化,因此具体操作中还应根据实际情况对枪位进行适当的调节:
(1)铁水温度:若遇铁水温度偏低,应先压枪提温,而后再提枪化渣,以防渣中的(FeO)积聚引发大喷,即采用低-高-低枪位操作。
(2)铁水成分:铁水硅、磷高时,若采用双渣操作,可先低枪位脱硅、磷,倒掉酸性渣;若单渣操作,由于石灰加入量大,应较高枪位化渣。铁水含锰高时,有利于化渣,枪位则可适当低些。
(3)装入量变化:炉内超装时,熔池液面高,枪位应相应提高,否则,不仅化渣困难而且易烧坏氧枪。
(4)炉内留渣:采用双渣留渣法时,由于渣中(FeO)高,有利于石灰熔化,因此吹炼前期的枪位适当低些,以防渣中(FeO)过高引发泡沫喷溅。
(5)供氧压力:高氧压与低枪位的作用相同,故氧压高时,枪位应高些。
恒压变枪操作的几种模式,如图11所示
A
高—低—高的六段式操作:
开吹枪位较高,与早形成初期渣;二批料加入后适时降枪,吹炼中期炉渣返干时又提枪化渣;吹炼后期先提枪化渣后降枪;终点拉碳出钢。
B
高—低—高的五段式操作:
五段式操作的前期与六段式操作基本一致,熔渣返干时可加入适量助熔剂调整熔渣流动性,以缩短吹炼时间。
图11
恒压变枪操作的几种模式
C
高一低一高一低的四段式操作:
在铁水温度较高或渣料集中在吹炼前期加入时可采用这种枪位操作。开吹时采用高枪位化渣,使渣中含(FeO)量达25~30%,促进石灰熔化,尽快形成具有一定碱度的炉渣,增大前期脱磷和脱硫效率,同时也避免酸性渣对炉衬的侵蚀。在炉渣化好后降枪脱碳,为避免在碳氧化剧烈反应期出现返干现象,适时提高枪位,使渣中(FeO)保持在10~15%,以利磷、硫继续去除。在接近终点时再降枪加强熔池搅拌,继续脱碳和均匀熔池成分和温度,降低终渣(FeO)含量。
四、造渣制度
造渣是转炉炼钢的一项重要操作。所谓造渣,是指通过控制入炉渣料的种类和数量,使炉渣具有某些性质,以满足熔池内有关炼钢反应需要的工艺操作。造渣制度是确定合适的造渣方法、渣料的种类、渣料的加入数量和时间以与加速成渣的措施。由于转炉冶炼时间短,必须快速成渣,才能满足冶炼进程和强化冶炼的要求,同时造渣对避免喷溅、减少金属损失和提高炉衬寿命都有直接影响。
一、成渣过程与造渣途径
转炉冶炼各期,都要求炉渣具有一定的碱度,合适的氧化性和流动性,适度的泡沫化。
o
吹炼初期,要保持炉渣具有较高的氧化性,∑(FeO)稳定在25%-30%,以促进石灰熔化,迅速提高炉渣碱度,尽量提高前期去磷去硫率和避免酸性渣侵蚀炉衬;
o
吹炼中期,炉渣的氧化性不得过低(∑(FeO)保持在10%-16%),以避免炉渣返干;
o
吹炼末期,要保证去除P、S所需的炉渣高碱度,同时控制好终渣氧化性,如冶炼[C]≥0.10%的镇静钢,终渣(FeO)应控制不大于15%-20%;冶炼沸腾钢,终渣(FeO)应不小于12%,需避免终渣氧化性过弱或过强。
炉渣粘度和泡沫化程度也应满足冶炼进程需要。前期要防止炉渣过稀,中期渣粘度要适宜,末期渣要化透作黏。泡沫性炉渣应尽早形成,并将其泡沫化程度控制在合适范围,以达到喷溅少、拉碳准、温度合适、达到磷硫去除的最佳吹炼效果。
转炉成渣过程,如图12所示:
o
吹炼初期,炉渣主要来自铁水中Si、Mn、Fe的氧化产物。加入炉内的石灰块由于温度低,表面形成冷凝外壳,造成熔化滞止期,对于块度为40mm左右的石灰,渣壳熔化需数十秒。由于发生Si、Mn、Fe的氧化反应,炉内温度升高,促进了石灰熔化,这样炉渣的碱度逐渐得到提高。
o
吹炼中期,随着炉温的升高和石灰的进一步熔化,同时脱碳反应速度加快导致渣中(FeO)逐渐降低,使石灰融化速度有所减缓,但炉渣泡沫化程度则迅速提高。由于脱碳反应消耗了渣中大量的(FeO),再加上没有达到渣系液相线正常的过热度,使化渣条件恶化,引起炉渣异相化,并出现返干现象。
o
吹炼末期,脱碳速度下降,渣中(FeO)再次升高,石灰继续熔化并加快了熔化速度。同时,熔池中乳化和泡沫现象趋于减弱和消失。
o
初期渣,主要矿物为钙镁橄榄石和玻璃体(SiO2)。钙镁橄榄石是锰橄榄石(2MnO.SiO2)、铁橄榄石(2FeO.SiO2)和硅酸二钙(2CaO.SiO2)的混合晶体。当(MnO)高时,它是以2FeO.SiO2和2MnO.SiO2为主,通常玻璃体不超过7%-8%,渣中自由氧化物相(RO)很少。
o
中期渣:石灰与钙镁橄榄石和玻璃体作用,生成CaO·SiO2,3CaO·2SiO2,2CaO·SiO2和3CaO·SiO2等产物,其中最可能和最稳定的是2CaO·SiO2,其熔点为2103℃。
o
末期渣:RO相急剧增加,生成的3CaO·SiO2分解为2CaO·SiO2和CaO,并有2CaO·Fe2O3生成。
图12
吹炼过程熔池渣的变化
石灰渣化机理和影响因素:
炼钢过程中成渣速度主要指的是石灰熔化速度,所谓的快速成渣主要指的是石灰快速熔解于渣中。
o
吹炼初期,各元素的氧化产物FeO、SiO2、MnO、Fe2O3等形成了熔渣。加入的石灰块就浸泡在初期渣中,初期渣中的氧化物从石灰表面向其内部渗透,并与CaO发生化学反应,生成一些低熔点的矿物,引起石灰表面的渣化。这些反应不仅在石灰块的外表面进行,而且也在石灰气孔的内表面进行。
o
但是在吹炼初期,SiO2易与CaO反应生成钙的硅酸盐,沉集在石灰块表面上,如果生成物是致密的,高熔点的2CaO·SiO2(熔点2130℃)和3CaO·SiO2(熔点2070五、石灰溶解机理
六、造渣方法
七、温度制度
o
在吹炼一炉钢的过程中,需要正确控制温度。温度制度主要是指炼钢过程温度控制和终点温度控制。
o
转炉吹炼过程的温度控制相对比较复杂,如何通过加冷却剂和调和剂枪位,使钢水的升温和成分变化协调起来,同时达到吹炼终点的要求,是温度控制的关键。
o
热量来源:铁水的物理热和化学热,它们约各点热量来源的一半。
o
热量消耗:习惯上转炉的热量消耗可分为两部分,一部分直接用于炼钢的热量,即用于加热钢水和炉渣的热量;一部分未直接用于炼钢的热量,即废气、烟尘带走的热量,炉口炉壳的散热损失和冷却剂的吸热等。
热量的消耗:
o
钢水的物理热约占70%;
o
炉渣带走的热量大约占10%;
o
炉气物理热也约占10%;
o
金属铁珠与喷溅带走热,炉衬与冷缺水带走热,烟尘物理热,生白云石与矿石分解与其他热损失共占约10%。
o
转炉热效率:是指加热钢水的物理热和炉渣的物理热占总热量的百分比。LD转炉热效率比较高,一般在75%以上。原因是LD转了上的热量利用集中,吹炼时间短,冷却水、炉气热损失低。
o
出钢温度首先取决于炼钢中的凝固温度,凝固温度则根据钢种的化学成分而定,钢液的凝固温度计算有多种经验公式:
o
出钢温度需考虑从出钢到浇注各阶段的温降。
ΔT为钢液的过热度,它与钢种、坯型有关,板坯取15-20℃,低合金方坯取20-25℃;
ΔT1为出钢过程温降;
ΔT2为出钢完毕至精炼之前的温降;
ΔT3为钢水精炼过程温降;
ΔT4为钢水精炼完毕至开浇之前的温降;
ΔT5为钢水从钢包至中间包温降。
o
转炉获得的热量除用于各项必要的支出外,通常上有大量富余热量,需加入一定数量的冷却剂。冷却剂的冶金特点包括他自身的冷却效应以与对化渣、喷溅、氧耗、钢铁料消耗和冷却剂加入方法的影响。要准确控制熔池温度,用废钢作冷却剂的效果最好,但为了促进化渣,也可以搭配一部分铁矿石或氧化铁皮。
o
在吹炼前期结束时,温度应为1450-1550℃,大炉子、低碳钢取下限,小炉子、高碳钢取上限;中期的温度为1550-1600℃,中、高碳钢取上限,因后期挽回温度时间少;后期的温度为1600-1680℃,取决于所炼钢种。
o
当吹炼后期出现温度过低时,可加适量的Fe-Si或Fe-Al提温。加Fe-Si提温,需配加一定量的石灰,防止钢水回磷。当吹炼后期出现温度过高时,可加适量的铁皮或矿石降温。如铁水温度低,碳量也低,可兑适量铁水再吹炼,在兑铁水前倒渣,并加Fe-Si防止产生喷溅。
o
终点控制是转炉吹炼末期的重要操作。终点控制主要是指终点温度和成分的控制。由于脱磷、脱硫比脱碳操作复杂,总是尽可能提前让磷、硫达到终点所需的范围,因此,终点的控制实质就是脱碳和温度的控制,把停止吹氧又俗称为“拉碳”。
确定冷却剂用量
1)冷却剂与其特点
转炉炼钢的冷却剂主要是废钢和矿石。比较而言,废钢的冷却效应稳定,而且硅磷含量也低,渣料消耗少,可降低生产成本;但是,矿石可在不停吹的条件下加入,而且具有化渣和氧化的能力。因此,目前一般是矿石、废钢配合冷却,而且是以废钢为主,且装料时加入;矿石在冶炼中视炉温的高低随石灰适量加入。
另外,冶炼终点钢液温度偏高时,通常加适量石灰或白云石降温(前两种均不能用)。
2)各冷却剂的冷却效应
冷却效应是指每kg冷却剂加入转炉后所消耗的热量,常用q表示,单位是kJ/kg。
(1)矿石的冷却效应:矿石冷却主要靠Fe2O3的分解吸热,因此其冷却效应随铁矿的成分不同而变化,含Fe2O370%、FeO10%时铁矿石的冷却效应为:
q矿=1×C矿×△t+λ矿+1×(Fe2O3%×112/160×6456+FeO%×56/72×4247)
=1×1.02×(1650-25)+209+1×(0.7×112/160×6456+0.1×56/72×4247)
=5360kJ/kg
(2)废钢的冷却效应:废钢主要依靠升温吸热来冷却熔池,由于不知准确成分,其熔点通常按低碳钢的1500℃考虑,入炉温度按25℃计算,于是废钢的冷却效应为:
q废=1×[C固(t熔-25)+λ废+C液(t出-t熔)]
=1×[0.7×(1500-25)+272+0.837(1650-1500)]
=1430kJ/kg
(3)氧化铁皮的冷却效应:计算方法同矿石,对于50%FeO、40%Fe2O3的氧化铁皮,其冷却热效应为:
q皮=5311kJ/kg
以废钢的冷却效应为标准1,则各种冷却剂的相对冷却能力见课本.
3)冷却剂用量的确定:
关于冷却剂加入量的确定,有两种方案。一种是定废钢,调矿石;另一种是定矿石,调废钢。现以第一种方案为例说明冷却剂用量的确定:国内目前的平均水平是,废钢的加入量为铁水量的8~12%,取10%。则矿石用量为:
(Q余-10×q废)/q矿=(30000-10×1430)/5360=2.93kg
即每100kg铁水加入10kg废钢和2.93矿石。
4)冷却剂用量的调整
通常各厂先依据自己的一般生产条件,按照上述过程计算出冷却剂的标准用量,生产中某炉钢冷却剂的具体用量则根据实际情况调整铁矿的用量,调整量过大时可增减废钢的用量。
实际生产过程温度的控制:按照上述的计算结果加入冷却剂,即可保证终点温度。但是,吹炼过程中还应根据炉内各个时期冶金反应的需要与炉温的实际情况调整熔池温度,保证冶炼的顺利进行。
(1)吹炼初期
如果碳火焰上来的早(之前是硅、锰氧化的火焰,发红),表明炉内温度已较高,头批渣料也已化好,可适当提前加入二批渣料;反之,若碳火焰迟迟上不来,说明开吹以来温度一直偏低,则应适当压枪,加强各元素的氧化,提高熔池温度,而后再加二批渣料。
(2)吹炼中期
可据炉口火焰的亮度与冷却水(氧枪进出水)的温差来判断炉内温度的高低,若熔池温度偏高,可加少量矿石;反之,压枪提温,一般可挽回10~20℃。
(3)吹炼末期
接近终点(据耗氧量与吹氧时间判断)时,停吹测温,并进行相应调整:若温高,加石灰降之:高出度数×136/石灰的冷却效应。若温低,加Fe-Si并点吹提之:1kgSi75氧化放热1×0.75×17807=13352kJ,例如,30吨钢液提温10℃需加Si75:300×10×136/13352≈30kg。
思考题
1解释名词:冷却效应
2掌握冷却剂用量的调整与测温后温度的调整方法。
八、终点控制
o
终点控制是转炉吹炼末期的重要操作。终点控制主要是指终点温度和成分的控制。由于脱磷、脱硫比脱碳操作复杂,总是尽可能提前让磷、硫达到终点所需的范围,因此,终点的控制实质就是脱碳和温度的控制,把停止吹氧又俗称为“拉碳”。
(一)终点控制的概念:
1)终点:熔池中金属的成分和温度达到所炼钢种要求时,称为终点。
2)终点的条件。吹炼到达终点的具体条件是:
(1)钢中碳达到所炼钢种要求的控制范围;
(2)钢中S、P低于规定下限要求一定范围;
(3)出钢温度保证能顺利进行精炼和浇铸;
(4)达到钢种要求控制的氧含量。
3)终点(碳)的控制
硫、磷的脱除情况比较复杂,因此总是在吹炼过程中提前使之满足要求,这样终点控制就简化为终点温度和终点碳的控制。终点温度的控制前节已作阐述,故在此仅介绍终点碳的控制。
(二)终点碳的控制方法有两种:
1)拉碳法
终点碳:钢种规格-合金增碳量。
控制方式:在实际生产中拉碳法又分为一次拉碳和高拉补吹两种控制方式。转炉吹炼中将钢液的含碳量脱至出钢要求时停止吹氧的控制方式称为一次拉碳法。
冶炼中高碳钢时,将钢液的含碳量脱至高于出钢要求0.2~0.4%时停吹,取样、测温后,再按分析结果进行适当补吹的控制方式称为高拉补吹法。
主要优点:
(1)终渣的(∑FeO)含量较低,金属收得率高,且有利于延长炉衬寿命;
(2)终点钢液的含氧低,脱氧剂用量少,而且钢中的非金属夹杂物少;
(3)冶炼时间短,氧气消耗少。
2)增碳法
定义:吹炼平均含碳量大于0.08%的钢种时,一律将钢液的碳脱至0.05%~0.06%时停吹,出钢时包内增碳至钢种规格要求的操作方法叫做增碳法。
终点碳:0.05%~0.06%。
主要优点:
(1)终点容易命中,省去了拉碳法终点前倒炉取样与校正成分和温度的补吹时间,因而生产率较高;
(2)终渣的(∑FeO)含量高,渣子化得好,去磷率高,而且有利于减轻喷溅和提高供氧强度;
(3)热量收入多,可以增加废钢的用量。
(4)操作稳定,易于实现自动控制。
采用拉碳法的关键在于,吹炼过程中与时、准确地判断或测定熔池的温度和含碳量努力提高一次命中率。而采用增碳法时,则应寻求含硫低、灰分少和干燥的增碳剂。
3)终点的判断
碳含量的判断:常用的判断仪器是热电偶结晶定碳仪,其特点是简单、准确,但速度慢。有前途的是红外、光谱等快速分析仪。生产中多凭经验对钢液含碳量进行判断,常用的方法有看火花、看火焰、看供氧时间和耗氧量。
(1)看火花:吹炼中会从炉口溅出金属液滴,遇空气被氧化而爆裂形成火花并分叉,火花分叉越多,金属含碳越高,当[C]小于0.1%时,爆裂的碳火花几乎不分叉,形成的是小火星。
(2)看火焰:金属含碳量较高时,碳氧反应激烈,炉口的火焰白亮、有力,长且浓密;当含碳量降到0.2%左右时,炉口的火焰稀薄且收缩、发软、打晃。
(3)看供氧时间和耗氧量:生产条件变化不大时,每炉钢的供氧时间和耗氧量也不会有太大的出入,因此,当吹氧时间与耗氧量与上炉接近时,本炉钢也基本到达终点。
4)温度的判断
目前常用插入式热电偶测定钢液的温度,生产中还可以借倒炉的机会观察炉内情况凭经验进行判断。若炉膛白亮、渣面上有火焰和气泡冒出,泡沫渣向外涌动,表明炉温较高;反之,若渣面暗红,没有火焰冒出,则炉温较低。
5)出钢操作
出钢是转炉炼钢过程的最后一个环节,操作中应注意以下问题:
(1)红包出钢
定义:出钢前将钢包内衬烤至发红达800~1000℃。
目的:减少出钢时的温降,从而降低出钢温度(15~20℃),增加废钢用量(15kg/t),并提高炉龄(150炉次)。
(2)保持适宜的出钢时间
目的:为了减少出钢过程中的钢液吸气(应短些)和有利于所加合金的搅拌均匀(应长些),需要适当的出钢持续时间。
要求:国标规定,50t以下转炉出钢持续时间应为1~4min;50~100t转炉应持续3~6min;100t以上转炉应持续4~8min。
(3)挡渣出钢,如图13所示
目的:减少出钢时的下渣量,提高合金元素的收得率、防止钢液回磷(转炉炼钢多是出钢时在包内进行脱氧合金化)。
方法:目前有挡渣球、挡渣帽、挡渣塞、U型虹吸出钢口、气动挡渣等多种方式,国内使用最多的是挡渣球和挡渣帽。
图13
挡渣示意图
挡渣帽的作用:减少出钢时的前期下渣(转炉出钢时,浮在钢液面上的炉渣将首先流经出钢口,事先将挡渣帽置于出钢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都2024年二手房买卖权利义务合同
- 2024年度文物古建筑照明设计施工合同
- 河北省沧州市三校联考2024-2025学年高三上学期11月期中考试 化学 含解析
- 2024年度在线教育平台定制开发合同
- 导演聘用合同模板(04年版)
- 2024年车位销售代理合作协议3篇
- 成都到乌鲁木齐2024年物流服务费用结算协议
- 槽探工程2024年度进度合同
- 二零二四年份文化创意设计合同
- 占用村民土地调解协议书(2篇)
- 高中语文教师资格考试学科知识与教学能力试卷及解答参考(2025年)
- 2024年小红书品牌合作合同
- 2024年大学生创业就业知识竞赛题库及答案(共350题)
- 智研咨询发布:2025年中国仿真花行业市场现状及投资前景分析报告
- 2024年净水设备安装与维护合同
- 中国医科大学2024年12月(含解析)《形势与政策》作业考核试题
- 湘潭、成都工厂VDA63-2023审核员培训考核附有答案
- 大学语文人文思考与写作实践智慧树知到期末考试答案章节答案2024年江苏大学扬州大学
- 整理收纳师课件
- (完整word版)英语四级单词大全
- 16J607-建筑节能门窗
评论
0/150
提交评论