新高考数学一轮复习考点练习考点26 空间直线、平面的平行 (含解析)_第1页
新高考数学一轮复习考点练习考点26 空间直线、平面的平行 (含解析)_第2页
新高考数学一轮复习考点练习考点26 空间直线、平面的平行 (含解析)_第3页
新高考数学一轮复习考点练习考点26 空间直线、平面的平行 (含解析)_第4页
新高考数学一轮复习考点练习考点26 空间直线、平面的平行 (含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点26空间直线、平面的平行考向一线面平行的判定与性质类别语言表述图形表示符号表示应用判定一条直线与一个平面没有公共点,

则称这条直线与这个平面平行a∩α=⌀⇒a∥α证明直线与平面平行平面外的一条直线与此平面内的一条直线平行,则平面外这条直线平行于这个平面

a⊄α,b⊂α,且a∥b⇒a∥α证明直线与平面平行性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b证明直线与直线平行1.如图,在正方体ABCD-A1B1C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG=GC1.则下列直线与平面A1BD平行的是()A.CE B.CF C.CG D.CC1【答案】B【解析】如图,连接AC,使AC交BD于点O,连接A1O,CF,在正方体ABCD­-A1B1C1D1中,由于SKIPIF1<0,又OC=SKIPIF1<0AC,可得:SKIPIF1<0,即四边形A1OCF为平行四边形,可得:A1O∥CF,又A1O⊂平面A1BD,CF⊄平面A1BD,可得CF∥平面A1BD,故选:B.2.在正方体SKIPIF1<0中,点E,F,M分别是棱BC,SKIPIF1<0,SKIPIF1<0的中点,点SKIPIF1<0,M到平面AEF的距离分别为SKIPIF1<0,SKIPIF1<0,则()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】如图,取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0,易证SKIPIF1<0.又因为SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,同理可证SKIPIF1<0平面SKIPIF1<0.因为SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,故选:C.考向二面面平行的判定与性质类别语言表述图形表示符号表示应用判定如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行

a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β证明平面与平面平行如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行

a⊂α,b⊂α,a∩b=P,a∥a',b∥b',a'⊂β,b'⊂β⇒α∥β垂直于同一条直线的两个平面平行

a⊥α,a⊥β⇒α∥β性质两个平面平行,则其中一个平面内的直线必平行于另一个平面

α∥β,a⊂α⇒a∥β证明直线与平面平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行

α∥β,α∩γ=a,β∩γ=b⇒a∥b证明直线与直线平行1.已知直线a与平面SKIPIF1<0,能使SKIPIF1<0的充分条件是()①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0④SKIPIF1<0A.①② B.②③ C.①④ D.②④【答案】D【解析】对①,若SKIPIF1<0,垂直于同一个平面的两个平面可以相交,故①错误;对②,若SKIPIF1<0,则SKIPIF1<0,平面的平行具有传递性,故②正确;对③,若SKIPIF1<0,平行于同一直线的两平面可以相交,故③错误;对④,SKIPIF1<0,垂直于同一直线的两平面平行,故④正确.综上:②④正确,故选:D.2.如图,在三棱锥SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分别是所在棱的中点.则下列说法错误的是()A.面SKIPIF1<0面SKIPIF1<0B.面SKIPIF1<0面SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0、SKIPIF1<0分别是SKIPIF1<0,SKIPIF1<0的中点,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,同理可得SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0正确;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0正确,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0正确;假设SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,与SKIPIF1<0矛盾,故SKIPIF1<0与SKIPIF1<0不平行,故SKIPIF1<0错误,故选:D3.在正方体SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0分别为SKIPIF1<0,SKIPIF1<0的中点,则()A.直线SKIPIF1<0平面SKIPIF1<0 B.直线SKIPIF1<0平面SKIPIF1<0C.平面SKIPIF1<0平面SKIPIF1<0 D.平面SKIPIF1<0平面SKIPIF1<0【答案】BD【解析】如图,取SKIPIF1<0的中点G,连接SKIPIF1<0,可证SKIPIF1<0,得四边形SKIPIF1<0为平行四边形,则SKIPIF1<0,若直线SKIPIF1<0平面SKIPIF1<0,则SKIPIF1<0//平面ACD或SKIPIF1<0平面SKIPIF1<0,与SKIPIF1<0平面SKIPIF1<0矛盾,故A错误;由正方体的结构特征可得SKIPIF1<0平面SKIPIF1<0,则SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0,同理可证SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0直线SKIPIF1<0平面ACD1,故B正确;而BDSKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面ACD1,故D正确;连接SKIPIF1<0,由SKIPIF1<0,可得四边形AA1C1C为平行四边形,则SKIPIF1<0平面A1BC1,ACSKIPIF1<0平面A1BC1,SKIPIF1<0平面A1BC1,同理AD1SKIPIF1<0平面A1BC1,又AC∩AD1=A,SKIPIF1<0平面A1BC1//平面ACD1,若平面A1EFSKIPIF1<0平面ACD1,则平面A1EF与平面A1BC1重合,则EFSKIPIF1<0平面A1BC1,与EFSKIPIF1<0平面A1BC1矛盾,故C错误.故选:BD题组一(真题在线)1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行C.α,β平行于同一条直线 D.α,β垂直于同一平面2.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.3.如图,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求证:SKIPIF1<0平面SKIPIF1<0;(2)求直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值;(3)若二面角SKIPIF1<0的余弦值为SKIPIF1<0,求线段SKIPIF1<0的长.4.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.5.如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=SKIPIF1<0,求四棱锥B−EB1C1F的体积.6.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.题组二1.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)2.如图,在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0为SKIPIF1<0的中点,SKIPIF1<0、SKIPIF1<0分别是SKIPIF1<0、SKIPIF1<0的中点,将SKIPIF1<0沿SKIPIF1<0折起,则下列说法不正确的是_______.①不论SKIPIF1<0折至何位置(不在平面SKIPIF1<0内),都有SKIPIF1<0平面SKIPIF1<0;②不论SKIPIF1<0折至何位置(不在平面SKIPIF1<0内),都有SKIPIF1<0;③不论SKIPIF1<0折至何位置(不在平面SKIPIF1<0内),都有SKIPIF1<0;④在折起过程中,一定存在某个位置,使SKIPIF1<0.3.已知三棱锥SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0中点,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则下列说法中正确的是()A.若SKIPIF1<0为SKIPIF1<0的外心,则SKIPIF1<0B.若SKIPIF1<0为等边三角形,则SKIPIF1<0C.当SKIPIF1<0时,SKIPIF1<0与平面SKIPIF1<0所成角的范围为SKIPIF1<0D.当SKIPIF1<0时,SKIPIF1<0为平面SKIPIF1<0内动点,若SKIPIF1<0平面SKIPIF1<0,则SKIPIF1<0在三角形SKIPIF1<0内的轨迹长度为SKIPIF1<04.如图,在四棱锥SKIPIF1<0中,底面SKIPIF1<0是边长为2的菱,SKIPIF1<0是SKIPIF1<0的中点.(=1\*ROMANI)证明:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(=2\*ROMANII)设SKIPIF1<0是线段SKIPIF1<0上的动点,当点SKIPIF1<0到平面SKIPIF1<0距离最大时,求三棱锥SKIPIF1<0的体积.5.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF⊥平面ABCD,DE=3AF=3.证明:平面ABF∥平面DCE.6.如图,四棱锥SKIPIF1<0的底面是正方形,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0、SKIPIF1<0分别为棱SKIPIF1<0、SKIPIF1<0的中点.(1)求证:SKIPIF1<0平面SKIPIF1<0;(2)求异面直线SKIPIF1<0和SKIPIF1<0所成角的余弦值.题组一1.B【解析】由面面平行的判定定理知:SKIPIF1<0内两条相交直线都与SKIPIF1<0平行是SKIPIF1<0的充分条件,由面面平行性质定理知,若SKIPIF1<0,则SKIPIF1<0内任意一条直线都与SKIPIF1<0平行,所以SKIPIF1<0内两条相交直线都与SKIPIF1<0平行是SKIPIF1<0的必要条件,故选B.2.(1)见解析;(2)SKIPIF1<0.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=SKIPIF1<0B1C.又因为N为A1D的中点,所以ND=SKIPIF1<0A1D.由题设知A1B1SKIPIF1<0DC,可得B1CSKIPIF1<0A1D,故MESKIPIF1<0ND,因此四边形MNDE为平行四边形,MN∥ED.又MNSKIPIF1<0平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,SKIPIF1<0的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则SKIPIF1<0,A1(2,0,4),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.设SKIPIF1<0为平面A1MA的法向量,则SKIPIF1<0,所以SKIPIF1<0可取SKIPIF1<0.设SKIPIF1<0为平面A1MN的法向量,则SKIPIF1<0所以SKIPIF1<0可取SKIPIF1<0.于是SKIPIF1<0,所以二面角SKIPIF1<0的正弦值为SKIPIF1<0.3.(1)见解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】依题意,可以建立以SKIPIF1<0为原点,分别以SKIPIF1<0的方向为SKIPIF1<0轴,SKIPIF1<0轴,SKIPIF1<0轴正方向的空间直角坐标系(如图),可得SKIPIF1<0,SKIPIF1<0.设SKIPIF1<0,则SKIPIF1<0.(1)依题意,SKIPIF1<0是平面SKIPIF1<0的法向量,又SKIPIF1<0,可得SKIPIF1<0,又因为直线SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)依题意,SKIPIF1<0.设SKIPIF1<0为平面SKIPIF1<0的法向量,则SKIPIF1<0即SKIPIF1<0不妨令SKIPIF1<0,可得SKIPIF1<0.因此有SKIPIF1<0.所以,直线SKIPIF1<0与平面SKIPIF1<0所成角的正弦值为SKIPIF1<0.(3)设SKIPIF1<0为平面SKIPIF1<0的法向量,则SKIPIF1<0即SKIPIF1<0不妨令SKIPIF1<0,可得SKIPIF1<0.由题意,有SKIPIF1<0,解得SKIPIF1<0.经检验,符合题意.所以,线段SKIPIF1<0的长为SKIPIF1<0.4.见解析【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1SKIPIF1<0平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.5.见解析【解析】(1)因为M,N分别为BC,B1C1的中点,所以MN∥CC1.又由已知得AA1∥CC1,故AA1∥MN.因为△A1B1C1是正三角形,所以B1C1⊥A1N.又B1C1⊥MN,故B1C1⊥平面A1AMN.所以平面A1AMN⊥平面EB1C1F.(2)AO∥平面EB1C1F,AOSKIPIF1<0平面A1AMN,平面A1AMNSKIPIF1<0平面EB1C1F=PN,故AO∥PN.又AP∥ON,故四边形APNO是平行四边形,所以PN=AO=6,AP=ON=SKIPIF1<0AM=SKIPIF1<0,PM=SKIPIF1<0AM=2SKIPIF1<0,EF=SKIPIF1<0BC=2.因为BC∥平面EB1C1F,所以四棱锥B−EB1C1F的顶点B到底面EB1C1F的距离等于点M到底面EB1C1F的距离.作MT⊥PN,垂足为T,则由(1)知,MT⊥平面EB1C1F,故MT=PMsin∠MPN=3.底面EB1C1F的面积为SKIPIF1<0所以四棱锥B−EB1C1F的体积为SKIPIF1<0.6.见解析【解析】因为SKIPIF1<0分别是SKIPIF1<0的中点,所以SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)因为SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0平面SKIPIF1<0.又因为SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.题组二1.点M在线段FH上(或点M与点H重合)【解析】连接HN,FH,FN,因为E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,则FH∥DD1,HN∥BD,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.故答案为:点M在线段FH上(或点M与点H重合).2.③【解析】取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0、SKIPIF1<0,如下图所示:对于①,SKIPIF1<0、SKIPIF1<0分别为SKIPIF1<0、SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,同理可证SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,①正确;对于②,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,②正确;对于③,SKIPIF1<0,若SKIPIF1<0,由平行线的传递性可知SKIPIF1<0,但SKIPIF1<0与SKIPIF1<0有公共点SKIPIF1<0,这与SKIPIF1<0矛盾,③错误;对于④,SKIPIF1<0,若SKIPIF1<0,由SKIPIF1<0,可得出SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0,因此,只需在折起的过程中使得SKIPIF1<0,就有SKIPIF1<0,④正确.故答案为:③.3.ACD【解析】依题意,画图如下:若SKIPIF1<0为SKIPIF1<0的外心,则SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,A正确;SKIPIF1<0若为等边三角形,SKIPIF1<0,又SKIPIF1<0,BC与PB相交于平面SKIPIF1<0内,可得SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,矛盾,B错误;若SKIPIF1<0,设SKIPIF1<0与平面SKIPIF1<0所成角为SKIPIF1<0,由A正确,知SKIPIF1<0,设SKIPIF1<0到平面SKIPIF1<0的距离为SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0即有SKIPIF1<0,当且仅当SKIPIF1<0取等号.可得SKIPIF1<0的最大值为SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的范围为SKIPIF1<0,C正确;取SKIPIF1<0中点SKIPIF1<0,SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0由中位线定理可得,SKIPIF1<0,SKIPIF1<0,则平面SKIPIF1<0平面SKIPIF1<0,由SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0在线段SKIPIF1<0上,即轨迹SKIPIF1<0,可得D正确;故选:ACD4.见解析【解析】(1)证明:连接SKIPIF1<0与SKIPIF1<0交于SKIPIF1<0,连接SKIPIF1<0,因为SKIPIF1<0是菱形,所以SKIPIF1<0为SKIPIF1<0的中点,又因为SKIPIF1<0为SKIPIF1<0的中点,所以SKIPIF1<0,因为SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)解:取SKIPIF1<0中点SKIPIF1<0,连接SKIPIF1<0,因为四边形SKIPIF1<0是菱形,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.同理可证:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又平面SK

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论