2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)_第1页
2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)_第2页
2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)_第3页
2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)_第4页
2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省丽水市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

2.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.

B.

C.

D.

3.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

4.设sinθ+cosθ,则sin2θ=()A.-8/9B.-1/9C.1/9D.7/9

5.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3

B.l1丄l2,l2//l3,l1丄l3

C.l1//l2//l3,l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面

6.A.B.C.D.

7.从1,2,3,4,5,6这6个数中任取两个数,则取出的两数都是偶数的概率是()A.1/3B.1/4C.1/5D.1/6

8.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

9.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2

10.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

二、填空题(10题)11.cos45°cos15°+sin45°sin15°=

12.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.

13.执行如图所示的流程图,则输出的k的值为_______.

14.

15.椭圆9x2+16y2=144的短轴长等于

16.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

17.双曲线x2/4-y2/3=1的离心率为___.

18.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

19.则a·b夹角为_____.

20.

三、计算题(5题)21.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

22.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

23.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

24.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

25.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、简答题(10题)26.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

27.化简

28.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

29.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

30.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

31.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

32.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

33.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率

34.计算

35.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

五、解答题(10题)36.已知函数f(x)=ax2-6lnx在点(1,f(1))处的切线方程为y=1;(1)求实数a,b的值;(2)求f(x)的最小值.

37.

38.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

39.

40.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

41.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.

42.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.

43.

44.

45.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.

六、单选题(0题)46.A.B.{3}

C.{1,5,6,9}

D.{1,3,5,6,9}

参考答案

1.C

2.B

3.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C

4.A三角函数的计算.因为sinθ+cosθ=1/3,(sinθ+cosθ)2=1/9=1+sin2θ所以sin2θ=-8/9

5.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.

6.B

7.C本题主要考查随机事件及其概率.任取两数都是偶数,共有C32=3种取法,所有取法共有C62=15种,故概率为3/15=1/5.

8.D

9.C

10.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

11.

12.2n-1

13.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.

14.16

15.

16.12,高三年级应抽人数为300*40/1000=12。

17.e=双曲线的定义.因为

18.x+y-2=0

19.45°,

20.π

21.

22.

23.

24.

25.

26.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

27.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

28.

29.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

30.(1)∵

∴又∵等差数列∴∴(2)

31.

32.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

33.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

34.

35.

36.

37.

38.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论