




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省丽水市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.下列命题正确的是()A.若|a|=|b|则a=bB.若|a|=|b|,则a>bC.若|a|=|b丨则a//bD.若|a|=1则a=1
2.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1
3.为A.23B.24C.25D.26
4.从1、2、3、4、5五个数字中任取1数,则抽中偶数的概率是()A.0B.1/5C.3/5D.2/5
5.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120
6.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
7.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}
8.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定
9.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
10.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
11.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.3
12.二项式(x-2)7展开式中含x5的系数等于()A.-21B.21C.-84D.84
13.A.
B.
C.
14.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)
15.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
16.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2
17.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.1
18.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.0
19.某品牌的电脑光驱,使用事件在12000h以上损坏的概率是0.2,则三个里最多有一个损坏的概率是()A.0.74B.0.096C.0.008D.0.512
20.已知点A(-1,2),B(3,4),若,则向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)
二、填空题(10题)21.不等式|x-3|<1的解集是
。
22.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
23.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
24.双曲线x2/4-y2/3=1的虚轴长为______.
25.
26.若事件A与事件互为对立事件,则_____.
27.等差数列的前n项和_____.
28.1+3+5+…+(2n-b)=_____.
29.方程扩4x-3×2x-4=0的根为______.
30.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.
三、计算题(5题)31.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
32.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
33.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(10题)36.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
37.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
38.解关于x的不等式
39.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
40.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
41.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
42.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
43.求经过点P(2,-3)且横纵截距相等的直线方程
44.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
45.已知函数:,求x的取值范围。
五、证明题(10题)46.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
47.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
48.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
49.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
50.己知sin(θ+α)=sin(θ+β),求证:
51.若x∈(0,1),求证:log3X3<log3X<X3.
52.△ABC的三边分别为a,b,c,为且,求证∠C=
53.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
54.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
55.
六、综合题(2题)56.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
参考答案
1.Ca、b长度相等但是方向不确定,故A不正确;向量无法比较大小,故B不正确;a两个向量相同,故C正确;左边是向量,右边是数量,等式不成立,D不正确。
2.C
3.A
4.D由于在5个数中只有两个偶数,因此抽中偶数的概率为2/5。
5.B
6.D根据直线与平面垂直的性质定理,D正确。
7.A并集,补集的运算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},
8.A数值的大小判断
9.B双曲线的定义.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴双曲线C的焦点坐标是(±2,0).
10.D集合的运算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.
11.D
12.D
13.A
14.B
15.C
16.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1
17.A同角三角函数的变换.若cosα=0,则sinα=0,显然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
18.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.
19.A
20.D
21.
22.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
23.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
24.2双曲线的定义.b2=3,.所以b=.所以2b=2.
25.x+y+2=0
26.1有对立事件的性质可知,
27.2n,
28.n2,
29.2解方程.原方程即为(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.
30.5或,
31.
32.
33.
34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
35.
36.x-7y+19=0或7x+y-17=0
37.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
38.
39.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
40.
41.
42.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
43.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
44.
∵μ//v∴(2x+1.4)=(2-x,3)得
45.
X>4
46.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
47.
48.
49.
50.
51.
52.
53.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 律师合作咨询协议书范本
- 县城门面转让协议书范本
- 车辆质押贷款合同模板(含车辆评估条款)
- 节日促销活动员工激励合同
- 事业单位停薪留职人员原单位业绩考核及奖励协议
- 餐饮企业股东合作协议与供应链优化
- 彩钢板房建筑项目施工安全与环境保护合同
- 离婚彩礼退还争议调解及仲裁协议
- 员工感恩培训
- 冬季检修安全培训
- 国家开放大学2025春《公共部门人力资源管理》形考任务1-4参考答案
- 本人饮酒免责协议书
- 2025年临床执业医师考试重要技能试题及答案
- 历史七年级历史下册期末测试卷(1~21课) 2024-2025学年七年级历史下(统编版2024)
- 住宅性能评定技术标准
- 驾驶员汛期专项安全培训
- 《生成式人工智能服务管理暂行办法》知识培训
- 旅游景区安全事故课件
- 中国心力衰竭诊断和治疗指南2024解读
- 《饲料添加剂学》课件
- 2025年长江财产保险股份有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论