2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省莱芜市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1

2.已知的值()A.

B.

C.

D.

3.A.7B.8C.6D.5

4.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

5.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-3

6.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600

7.A.B.C.D.

8.下列各组数中成等比数列的是()A.

B.

C.4,8,12

D.

9.A.15,5,25B.15,15,15C.10,5,30D.15,10,20

10.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}

11.A.B.{3}

C.{1,5,6,9}

D.{1,3,5,6,9}

12.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23

13.下列函数为偶函数的是A.B.C.

14.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

15.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

16.已知a=1.20.1,b=ln2,c=5-1/2,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.c>a>b

17.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

18.设集合={1,2,3,4,5,6,},M={1,3,5},则CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

19.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3

20.设全集={a,b,c,d},A={a,b}则C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}

二、填空题(10题)21.

22.

23.

24.若向量a=(2,-3)与向量b=(-2,m)共线,则m=

25.椭圆9x2+16y2=144的短轴长等于

26.

27.

28.

29.等差数列中,a2=2,a6=18,则S8=_____.

30.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

三、计算题(5题)31.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

35.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(10题)36.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值

37.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

38.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

39.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。

40.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

41.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

42.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

43.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

44.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

45.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

五、证明题(10题)46.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

47.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

48.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

49.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

50.己知sin(θ+α)=sin(θ+β),求证:

51.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

52.若x∈(0,1),求证:log3X3<log3X<X3.

53.△ABC的三边分别为a,b,c,为且,求证∠C=

54.

55.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

六、综合题(2题)56.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

参考答案

1.C

2.A

3.B

4.C

5.A两直线平行的性质.由题意知两条直线的斜率均存在,因为两直线互相.平

6.B

7.C

8.B由等比数列的定义可知,B数列元素之间比例恒定,所以是等比数列。

9.D

10.A交集

11.D

12.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.

13.A

14.A

15.D

16.C对数函数和指数函数的单

17.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C

18.A补集的运算.CuM={2,4,6}.

19.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3

20.D集合的运算.C∪A={c,d}.

21.

22.4.5

23.x+y+2=0

24.3由于两向量共线,所以2m-(-2)(-3)=0,得m=3.

25.

26.(3,-4)

27.1

28.-1/2

29.96,

30.72

31.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

32.

33.

34.

35.

36.

37.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

38.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

39.

40.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

41.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

42.

43.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

44.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

45.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

46.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

47.

∴PD//平面ACE.

48.

49.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

50.

51.

52.

53.

54.

55.

56.解:(1)斜率k=5/3,设直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论