2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)_第1页
2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)_第2页
2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)_第3页
2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)_第4页
2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年湖南省湘潭市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

2.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

3.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

4.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

5.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

6.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

7.A.1B.2C.3D.4

8.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8

9.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

10.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}

11.cos215°-sin215°=()A.

B.

C.

D.-1/2

12.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

13.A.

B.

C.

D.U

14.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7

15.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

16.已知,则sin2α-cos2α的值为()A.-1/8B.-3/8C.1/8D.3/8

17.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离

18.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)

19.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

20.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

二、填空题(10题)21.如图所示的程序框图中,输出的S的值为______.

22.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.

23.

24.

25.

26.i为虚数单位,1/i+1/i3+1/i5+1/i7____.

27.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

28.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.

29.的展开式中,x6的系数是_____.

30.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.

三、计算题(10题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

33.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

35.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

37.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

38.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

39.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

40.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、简答题(10题)41.证明:函数是奇函数

42.已知cos=,,求cos的值.

43.已知求tan(a-2b)的值

44.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

45.求证

46.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

47.简化

48.由三个正数组成的等比数列,他们的倒数和是,求这三个数

49.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

50.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。

五、解答题(10题)51.

52.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

53.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

54.已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.

55.

56.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

57.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

58.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

59.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

60.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

六、单选题(0题)61.已知a=(1,2),则|a|=()A.1

B.2

C.3

D.

参考答案

1.C

2.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

3.B直线的两点式方程.点代入验证方程.

4.D

5.C

6.C

7.C

8.A

9.A充要条件的判断.若x=1,则x2-1=0成立.x2-1=0,则x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要条件.

10.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}

11.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,

12.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

13.B

14.D

15.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

16.B三角函数的恒等变换,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8

17.B圆与圆的位置关系,两圆相交

18.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。

19.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

20.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.

21.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12

22.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.

23.-5或3

24.-2i

25.5

26.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0

27.x+y-2=0

28.4、6、8

29.1890,

30.

,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).

31.

32.

33.

34.

35.

36.

37.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

38.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

39.

40.

41.证明:∵∴则,此函数为奇函数

42.

43.

44.

45.

46.

∵μ//v∴(2x+1.4)=(2-x,3)得

47.

48.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

49.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

50.

51.

52.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

53.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以当4<x<5时,h(x)>0,h(x)在(4,5]为增函数;当5<x<7,h(x)<0,h(x)在[5,7)为减函数,故当x=5时,函数h(x)在区间(4,7)内有极大值点,也是最大值点,即x=5时函数h(x)取得最大值50.所以当销售价格为5元/千克时,A系列每日所获得的利润最大.

54.(1)设等差数列{an}的公差为d因为a3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)设等比数列{bn}的公比为q.因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以数列{bn}的前n项和公式为Sn=b1(1-qn)/1-q=4(1-3n)

55.

56.

57.(1)如图,在APAD中,因为E,F分别为AP,AD的中点,所以EF//PD又因为EF不包含于平面PCD,PD包含于平面P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论