2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)_第1页
2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)_第2页
2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)_第3页
2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)_第4页
2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省泸州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),则f(5)等于()A.1B.-1C.0D.2

2.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

3.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

4.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

5.若a<b<0,则下列结论正确的是()A.a2<b2

B.a3<b<b3</b

C.|a|<|b|

D.a/b<1

6.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0

7.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

8.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°

9.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

10.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3

B.l1丄l2,l2//l3,l1丄l3

C.l1//l2//l3,l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面

11.A.7B.8C.6D.5

12.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

13.函数y=|x|的图像()

A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x直线对称

14.A.3

B.8

C.

15.若logmn=-1,则m+3n的最小值是()A.

B.

C.2

D.5/2

16.已知{<an}为等差数列,a3+a8=22,a6=7,则a5=()</aA.20B.25C.10D.15

17.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

18.已知定义在R上的函数f(x)图象关于直线x=l对称,若X≥1时,f(x)=x(1-x),则f(0)=()A.OB.-2C.-6D.-12

19.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.

B.

C.

D.

20.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50

21.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}

22.下列命题正确的是()A.若|a|=|b|则a=bB.若|a|=|b|,则a>bC.若|a|=|b丨则a//bD.若|a|=1则a=1

二、填空题(10题)23.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.

24.以点(1,0)为圆心,4为半径的圆的方程为_____.

25.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

26.

27.

28.

29.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.

30.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

31.若函数_____.

32.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.

三、计算题(10题)33.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

35.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

36.解不等式4<|1-3x|<7

37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

38.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

39.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

41.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

42.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

四、简答题(10题)43.简化

44.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

45.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

46.已知的值

47.证明:函数是奇函数

48.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

49.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率

50.解关于x的不等式

51.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程

52.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

五、解答题(10题)53.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

54.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.

55.解不等式4<|1-3x|<7

56.

57.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.

58.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

59.若x∈(0,1),求证:log3X3<log3X<X3.

60.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.

61.A.90B.100C.145D.190

62.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

六、单选题(0题)63.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

参考答案

1.C

2.D圆的标准方程.圆的半径r

3.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

4.C

5.B

6.D

7.D

8.B

9.D

10.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.

11.B

12.C

13.B由于函数为偶函数,因此函数图像关于y对称。

14.A

15.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.

16.D由等差数列的性质可得a3+a8=a5+a6,∴a5=22-7=15,

17.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.

18.B函数图像的对称性.由对称性可得f(0)=f(2)=2(1-2)=-2

19.D

20.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.

21.B由题可知AB={3,4,5},所以其补集为{1,2,6,7}。

22.Ca、b长度相等但是方向不确定,故A不正确;向量无法比较大小,故B不正确;a两个向量相同,故C正确;左边是向量,右边是数量,等式不成立,D不正确。

23.180,

24.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

25.-3或7,

26.{x|0<x<1/3}

27.-2/3

28.3/49

29.-3,

30.12,高三年级应抽人数为300*40/1000=12。

31.1,

32.

33.

34.

35.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

36.

37.

38.

39.

40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

41.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

42.

43.

44.

45.

∵μ//v∴(2x+1.4)=(2-x,3)得

46.

∴∴则

47.证明:∵∴则,此函数为奇函数

48.(1)∵

∴又∵等差数列∴∴(2)

49.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

50.

51.

52.

53.

54.

55.

56.

57.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1

58.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4为首项,2为公比的等比数列,其通项公式为bn=5/4×2n-1=5×2n-3.

59.

60.(1)ABCD-A1B1C1D1为长方体,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论