版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年浙江省丽水市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.65
2.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m
B.若l//α,m⊥l,则m⊥α
C.若l//α,m//α,则l//m
D.若l⊥α,l///β则a⊥β
3.A.-1B.-4C.4D.2
4.若102x=25,则10-x等于()A.
B.
C.
D.
5.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.
B.
C.
D.
6.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i
7.A.
B.
C.
8.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
9.A.B.C.
10.下列函数为偶函数的是A.
B.
C.
D.
11.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
12.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
13.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
14.A.1B.2C.3D.4
15.已知等差数列中,前15项的和为50,则a8等于()A.6
B.
C.12
D.
16.椭圆x2/4+y2/2=1的焦距()A.4
B.2
C.2
D.2
17.A.B.C.D.
18.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列
19.A.B.C.D.
20.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
21.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23
22.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件
B.a=0或b=0是AB=0的充分条件
C.a=0且b=0是AB=0的必要条件
D.a=0或b=0是AB=0的必要条件
二、填空题(10题)23.抛物线y2=2x的焦点坐标是
。
24.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.
25.若复数,则|z|=_________.
26.
27.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
28.
29.i为虚数单位,1/i+1/i3+1/i5+1/i7____.
30.
31.如图所示的程序框图中,输出的S的值为______.
32.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
三、计算题(10题)33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
36.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
37.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
39.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
40.解不等式4<|1-3x|<7
41.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
42.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
四、简答题(10题)43.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
44.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
45.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
46.化简
47.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
48.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
49.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
50.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
51.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
52.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
五、解答题(10题)53.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.
54.
55.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c
56.
57.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
58.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB
59.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
60.
61.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
62.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
六、单选题(0题)63.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.
B.
C.
D.
参考答案
1.C
2.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C
3.C
4.B
5.D
6.B共轭复数的计算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i复数z=2i/1的共扼复数是1-i.
7.B
8.A
9.C
10.A
11.C
12.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
13.D
14.C
15.A
16.D椭圆的定义.由a2=b2+c2,c2=4-2=2,所以c=,椭圆焦距长度为2c=2
17.A
18.D
19.C
20.A集合补集的计算.C∪M={2,4,6}.
21.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.
22.C
23.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
24.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.
25.
复数的模的计算.
26.10函数值的计算.由=3,解得a=10.
27.-3或7,
28.75
29.0.复数的运算.1/i+1/i3+1/i5+1/i7=-i+i-i+i=0
30.0
31.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12
32.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
33.
34.
35.
36.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
37.
38.
39.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
40.
41.
42.
43.
∵μ//v∴(2x+1.4)=(2-x,3)得
44.
45.∵(1)这条弦与抛物线两交点
∴
46.sinα
47.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
48.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
49.
50.
51.
52.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
53.(1)设椭圆的方程为x2/a2+y2/b2=1因为e=,所以a2=4b2,又因为椭圆过点M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故椭圆标准方x2/20+y2/5=1(2)将y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2)-20(4m2-20)>0,解得-5<m<5.又由题意可知直线不过M(4,1),所以4+m≠1,m≠-3,所以m的取值范围是(-5,-3)∪(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生毕业登记表自我鉴定(5篇)
- 石河子大学《历史教学技能实训》2022-2023学年第一学期期末试卷
- 石河子大学《工业药物分析综合实验》2022-2023学年第一学期期末试卷
- 石河子大学《教师语言与行为艺术》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数字信号处理》2021-2022学年第一学期期末试卷
- 沈阳理工大学《美国文学史》2022-2023学年第一学期期末试卷
- 沈阳理工大学《机械工程材料》2021-2022学年第一学期期末试卷
- 沈阳理工大学《翻译工作坊》2023-2024学年第一学期期末试卷
- 合同法81条对应民法典
- 高空作业合同安全责任书模版
- 胎心听诊技术最全课件
- 无套利分析方法课件
- ERCP+EST+ENBD相关知识及护理
- 住院患者导管滑脱危险因素评估表
- 一年级数学老师家长会发言稿
- Linux操作系统应用(麒麟系统)PPT完整全套教学课件
- 湖北省旅游PPT简介湖北省幻灯片模板
- 大学生创新创业PPT完整全套教学课件
- 报关单位备案信息表
- 宁夏医学会超声医学分会委员候选人推荐表
- 消费者咨询业务试题及答案(4月4更新)
评论
0/150
提交评论