版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题14将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营。问如何行走才能使总的路程最短。模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。方法:如右图,作点B关于直线L的对称点B’,连接AB’,与直线L的交点即为所求的渡河点,最短距离为线段AB’的长。模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。数学描述:如图在直线AB、BC上分别找点M、N,使得?PMN周长最小。方法:如右图,分别作点P关于直线AB、BC的对称点P’、P’’,连接P’P’’,与两直线的交点即为所求点M、N,最短距离为线段P’P’’的长。模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P’、Q’,连接P’Q’,与两直线的交点即为所求点M、N,最短距离为线段(PQ+P’Q’)的长。模型一-模型四的理论依据:两点之间线段最短。模型五:已知点P在直线AB、BC的外侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,过点P作PN⊥BC,垂足为点N,PN与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段PN的长。模型六:已知点P在直线AB、BC的内侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,作点P关于直线AB的对称点P’,过点P’作P’N⊥BC,垂足为点N,P’N与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段P’N的长。模型五、模型六的理论依据:垂线段最短。模型七(两点在同侧):在直线L上求一点P,求|PA-PB|的最大值方法:如右图,延长射线AB,与直线L交于点P,|PA-PB|最大值为AB模型八(两点在异侧):在直线L上求一点P,求|PA-PB|的最大值。方法:如右图,作点B关于直线L的对称点B’,延长射线AB’,与直线L交于点P,|PA-PB|最大值为AB’模型七、模型八的理论依据:在三角形中两边之差小于第三边。模型九在直线L上求一点P,求|PA-PB|的最小值。方法:如右图,作线段AB的垂直平分线与直线L相交于点P,|PA-PB|最小值为0。模型九的理论依据:线段垂直平分线上的点到线段两端距离相等。模型十:如图,一条宽度相同的河流两侧有A、B两个营地,将军令下属在河流间搭建一座垂直于河岸的桥梁MN,使得AM+MN+NB之和最短,在何处搭建桥梁才能完成任务呢?方法:如右图,将点A向下平移MN的单位长度得到点A’,连接A’B,交n于点N,过点N作MN⊥m,垂足为点M,点M和点N即为所求,最短距离为A’B+MN模型十一:线段MN在直线L上可移动,且MN=a,当MN移动到什么位置时,求AM+MN+NB最小值。方法:如右图,将点A向右平移a个单位长度得点A’,作B关于直线L的对称点B’,连接A’B’,交直线L于点N,将点N向左平移a个单位长度得点M,点M和点N即为所求,最短距离为A’B’+MN模型十、十一的理论依据:平行四边形的性质+两点之间线段最短。【培优训练】1.(2022秋·广东韶关·八年级校考期中)如图,等边三角形的边上的高为6,是边上的中线,M是线段上的-一个动点,E是中点,则的最小值为_________.2.(2022·广东·九年级专题练习)已知点,,在x轴上的点C,使得最小,则点C的横坐标为_______.3.(2022秋·全国·八年级专题练习)如图,点是内任意一点,,点和点分别是射线和射线上的动点,,则周长的最小值是______.4.(2021秋·河南南阳·八年级统考阶段练习)如图,等边的边长为4,点是边的中点,点是的中线上的动点,则的最小值是_____.5.(2022春·浙江台州·八年级校考开学考试)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是_____.6.(2022秋·江苏·八年级专题练习)如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=_____°.7.(2021·全国·九年级专题练习)如图,∠AOB=45°,角内有一点P,PO=10,在角两边上有两点Q、R(均不同于点O),则△PQR的周长最小值是____;当△PQR周长最小时,∠QPR的度数=__.8.(2019·黑龙江伊春·统考中考真题)如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.9.(2022春·陕西宝鸡·八年级统考期末)如图,在中,,,的面积为12,的垂直平分线交于点,若为边上的中点,为线段上的一动点,则周长的最小值为______.10.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.11.(2021秋·山东济南·八年级济南市章丘区实验中学校考阶段练习)如图,△ABC中,∠ACB=90°,AC=BC=4,点D,E分别是AB、AC的中点,在CD上找一点P,连接AP、EP,当AP+EP最小时,这个最小值是_____.12.(2021秋·江苏盐城·八年级校考阶段练习)在平面直角坐标系中,点,点,若有一点,当的值最小时,________.13.(2022秋·江苏·八年级专题练习)如图,在一条东西向的马路上有广场A和医院C,在各自正北方向上分别有汽车站B和汽车站D,已知AC=14km,AB=4km,CD=8km,市政府打算在马路AC段之间建造一个加油站P.(1)若要使得加油站P到两汽车站的距离之和最小,请用尺规作图在图1中作出加油站P的位置,并直接写出此时的最小值.(作图请保留痕迹,结果可以保留根号)(2)若要使得加油站到两汽车站的距离相等,请用尺规作图在图2中作出加油站P的位置,并求出此时PA的距离.(作图请保留痕迹)14.(2022秋·江苏·八年级专题练习)如图,牧童在离河边3km的A处牧马,小屋位于他南6km东9km的B处,他想把他的马牵到河边饮水,然后回小屋.他要完成此过程所走的最短路程是多少?并在图中画出饮水C所在在位置(保留作图痕迹).15.(2021秋·陕西商洛·八年级统考期末)如图,点A是将军和马居住的营帐,点B是一块儿指定的草地,一条小河L潺潺流过,P是将军带着马儿喝水的地方,P点在何处时,将军和马儿走过的路的值最小.(1)请在图中画出最短路径,标出点P的位置;(2)证明这时最小.16.(2020秋·新疆乌鲁木齐·八年级乌鲁木齐市第九中学校考期中)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线MN对称的.(2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)17.(2022秋·广东广州·八年级校考期中)如图,在△ABC中,AB=AC,AD是△ABC底边BC上的中线,点P为线段AB上一点.(1)在AD上找一点E,使得PE+EB的值最小;(2)若点P为AB的中点,当∠BPE满足什么条件时,△ABC是等边三角形,并说明理由.18.(2021春·河北承德·八年级统考期末)如图,在平面直角坐标系中,,,.(1)在图中作出关于轴的对称图形;(2)写出点,,的坐标,并求出的面积;(3)若在轴上存在点使最小,则点的坐标为______.19.(2023秋·内蒙古通辽·九年级校考期中)如图,抛物线与x轴交于两点.(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.20.(2022秋·全国·九年级专题练习)如图,抛物线与轴交于、,与轴交于点,点为的中点,点、分别为轴正半轴和抛物线对称轴上的动点,连接、、,求四边形周长最小时点、的坐标.21.(2021春·云南红河·八年级统考期末)在平面直角坐标系中,矩形纸片AOBC按如图方法放置,点A、B分别在y轴和x轴上,已知OA=2,OB=4,点D在边AC上,且AD=1.解答下列问题.(1)点C的坐标为_______;(2)在x轴上有一点E,使得△CDE的周长最短,求出点E的坐标及直线CE的解析式.(3)在平面直角坐标系内是否存在点P,使得以C、D、P、E为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.22.(2021·全国·九年级专题练习)如图,在平面直角坐标系中,、、,点、分别是直线和轴上的动点,求周长的最小值.23.(2022·江苏泰州·校考模拟预测)直线和双曲线交于点,.(1)求,,的值;(2)在坐标轴上有一点,使的值最小,直接写出点的坐标.24.(2021·全国·九年级专题练习)如图,正方形的边长为4,、为对角线上的动点,且,连接、,求周长的最小值.25.(2022秋·八年级课时练习)(1)【问题解决】已知点在内,过点分别作关于、的对称点、.①如图1,若,请直接写出______;②如图2,连接分别交、于、,若,求的度数;③在②的条件下,若度(),请直接写出______度(用含的代数式表示).(2)【拓展延伸】利用“有一个角是的等腰三角形是等边三角形”这个结论,解答问题:如图3,在中,,点是内部一定点,,点、分别在边、上,请你在图3中画出使周长最小的点、的位置(不写画法),并直接写出周长的最小值.26.(2021·四川南充·一模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(4,0)、B(0,4)、C.其对称轴l交x轴于点D,交直线AB于点F,交抛物线于点E.(1)求抛物线的解析式;(2)点P为直线l上的动点,求△PBC周长的最小值;(3)点N为直线AB上的一点(点N不与点F重合),在抛物线上是否存在一点M,使以点E、F、N、M为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.27(2022·湖北黄石·统考中考真题)如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.28.(2021秋·广东中山·九年级广东省中山市黄圃镇马新初级中学校考期中)已知,抛物线,与x轴交于A、B两点(点A在点B的左侧),交y轴于点C,抛物线的顶点为点D.(1)求的长度和点D的坐标;(2)在该抛物线的对称轴上找一点P,求出的值最小时P点的坐标;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《分布式与并行计算》2021-2022学年期末试卷
- 《机械设计基础》期末考试试卷九
- 吉林艺术学院《数字交互艺术概论》2021-2022学年第一学期期末试卷
- 2024年供销合同范本超市
- 吉林师范大学《中国画论》2021-2022学年第一学期期末试卷
- 吉林师范大学《虚拟现实引擎技术》2021-2022学年期末试卷
- 2024年大棚蔬菜苗售卖合同范本
- 签字离婚后续签协议书范文模板
- 2022年江西省公务员录用考试《申论》真题(行政执法类卷)及答案解析
- 2022 年广东省公务员录用考试《申论》真题(县级卷)及答案解析
- 主题班会-团结友爱
- 1~2岁儿童动作发展与训练-精细动作
- 10kV隔离开关技术规范书
- 方城县城市运行管理服务平台(智慧城管)项目方案汇报
- 第四课探索认识的奥秘高中政治统编版必修四
- 第2章 空间数据结构
- 石油炼化厂项目保险建议书课件
- 吸附式空气干燥机操作规程
- 《中国餐桌礼仪》(说课稿)-小学生主题班会通用版
- 三角函数在新旧教材中的对比(全文)
- 总法律顾问述职报告书
评论
0/150
提交评论