江苏省镇江市新区2022-2023学年中考数学最后冲刺模拟试卷含解析_第1页
江苏省镇江市新区2022-2023学年中考数学最后冲刺模拟试卷含解析_第2页
江苏省镇江市新区2022-2023学年中考数学最后冲刺模拟试卷含解析_第3页
江苏省镇江市新区2022-2023学年中考数学最后冲刺模拟试卷含解析_第4页
江苏省镇江市新区2022-2023学年中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°2.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤3.下列计算正确的是A. B. C. D.4.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10° B.12.5° C.15° D.20°5.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重 D.该校初三学生的体重6.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为()A. B.2 C. D.8.给出下列各数式,①②③④计算结果为负数的有()A.1个 B.2个 C.3个 D.4个9.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60° B.35° C.30.5° D.30°10.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到“三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)12.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.14.计算:.15.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)16.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.三、解答题(共8题,共72分)17.(8分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.18.(8分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.19.(8分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?20.(8分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.21.(8分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?22.(10分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.23.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.24.如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC.求证:△BDA∽△CED.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.2、A【解析】

由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).3、B【解析】试题分析:根据合并同类项的法则,可知,故A不正确;根据同底数幂的除法,知,故B正确;根据幂的乘方,知,故C不正确;根据完全平方公式,知,故D不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.4、C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.5、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,

故选C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、B【解析】

连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.7、C【解析】

过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,则AB=2AC=2cm.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8、B【解析】∵①;②;③;④;∴上述各式中计算结果为负数的有2个.故选B.9、D【解析】

根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧的中点,∴∠AOB=∠AOC=60°,由圆周角定理得,∠D=∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.10、C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A.检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C.“367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D.“多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解.解题关键:理解相关概念,合理运用举反例法.二、填空题(本大题共6个小题,每小题3分,共18分)11、18π【解析】

根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.【详解】解:∵正六边形的内角为=120°,∴扇形的圆心角为360°−120°=240°,∴“三叶草”图案中阴影部分的面积为=18π,故答案为18π.【点睛】此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.12、5.68×109【解析】试题解析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.56.8亿故答案为13、(,)【解析】

由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.14、【解析】

此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式.【点睛】此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.15、【解析】分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.详解:连接AA′,如图所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′为等腰直角三角形,∴∠ACA′=90°,∴点A走过的路径长=×2πAC=π.故答案为:π.点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.16、【解析】

连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.三、解答题(共8题,共72分)17、(1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.【解析】试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;(2)先讨论x1,x2的正负,再根据根与系数的关系求解.试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,故方程一定有两个实数根;(2)①当x1≥0,x2≥0时,即x1=x2,∴△=(2m﹣1)2=0,解得m=;②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,∴x1+x2=2m+1=0,解得:m=﹣;③当x1≤0,x2≤0时,即﹣x1=﹣x2,∴△=(2m﹣1)2=0,解得m=;综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.18、1【解析】

通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均为实数,∴x=y=z.∴19、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.【解析】

(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得:,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:.因为为正整数,故或3;答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.20、(1);(2)当m=2时,四边形CQMD为平行四边形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;

(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:y=−x+2,设点M(m,−m+2),Q(m,m2−m−2),可得MQ=−m2+m+4,根据平行四边形的性质可得QM=CD=4,即−m2+m+4=4可解得m=2;

(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【详解】(1)由题意知,∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,∴解得:∴所求抛物线的解析式为(2)由(1)知抛物线的解析式为,令x=0,得y=﹣2∴点C的坐标为C(0,﹣2)∵点D与点C关于x轴对称∴点D的坐标为D(0,2)设直线BD的解析式为:y=kx+2且B(4,0)∴0=4k+2,解得:∴直线BD的解析式为:∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q∴可设点M,Q∴MQ=∵四边形CQMD是平行四边形∴QM=CD=4,即=4解得:m1=2,m2=0(舍去)∴当m=2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①当∠BDQ=90°时,则BD2+DQ2=BQ2,∴解得:m1=8,m2=﹣1,此时Q1(8,18),Q2(﹣1,0)②当∠DBQ=90°时,则BD2+BQ2=DQ2,∴解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.21、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】

(1)设降价后乙种水果的售价是x元,30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论