备课素材:地球生命的诞生-高一下学期生物人教版必修2_第1页
备课素材:地球生命的诞生-高一下学期生物人教版必修2_第2页
备课素材:地球生命的诞生-高一下学期生物人教版必修2_第3页
备课素材:地球生命的诞生-高一下学期生物人教版必修2_第4页
备课素材:地球生命的诞生-高一下学期生物人教版必修2_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

地球生命的诞生高中生物学必修二提到,地球上所有的生物都是由共同的原始祖先进化而来:原始地球是没有生命的,那么,地球上的生命是如何诞生的呢?如今,生命几乎已经征服了地球上的每寸土地。但在地球刚刚形成时,它实际上就是没有任何生机的石球。那么生命到底起源自哪里?它们最初是什么样子的?地球生命诞生之谜:所有生命都是细菌后代1.细菌是所有生命的共同祖先在人类历史上,很多人相信“神创论”,即神明创造了生命,比如中国的女娲造人。还有许多令人觉得匪夷所思的理论。然而,这些传说或神话都不是真的。在过去100多年间,科学家们试图弄清楚地球上的第一个生命是如何诞生的。他们甚至尝试在实验室中重现“创世时刻”:从无到有凭空创造出全新的生命。尽管到目前为止,还没有人取得成功,但我们已经取得了很大进展。如今,许多研究生命起源的科学家坚信,他们正走在正确的道路上。生命是古老的,恐龙可能是地球上最著名的已灭绝生物,它们起源自2.5亿年前,但生命可追溯到更久远的年代。目前,世界上最古老的已知化石有35亿年历史,比最古老的恐龙还要早14倍。但是化石记录可能进一步追溯历史。比如2016年8月份,研究人员发现了37亿年前的化石微生物。它们几乎与地球同时诞生的,地球形成于45亿年前。如果我们假设生命是在地球上形成的,这似乎是合理的,因为我们还未在其他地方发现生命。那么,生命肯定是在地球形成的最初10亿年间出现的,最古老的化石已经可以证明这一点。为了缩小生命诞生的时间跨度,我们可以对生命最初的形态做出猜测。自从19世纪以来,生物学家们已经知道,所有生物都是由细胞构成的。细胞是17世纪发现的,当时现代显微镜刚刚被发明。但是整整过了100多年,人们才意识到细胞是所有生命的基本组成形式。你可能觉得自己与鲶鱼或霸王龙截然不同,但显微镜下显示我们的细胞非常相似。植物和菌类也是如此。到目前为止,数量最庞大的生命形式当属微生物,它们每个个体只有1个细胞构成。细菌是最庞大的微生物群体,它们几乎无所不在。2016年4月份,科学家们推出了新版“生命之树”,即包括所有生命的家族树。几乎所有分支都是细菌。此外,生命之树的形状显示,细菌也是所有生命的共同祖先。换句话说,如今地球上所有活着的生物,包括人类,都是细菌的后代。生命之树这意味着,我们可以更精确地定义生命起源问题。只用35亿年前地球上存在的材料和条件,我们肯定能制造出细胞。那么,我们到底该如何去做呢?

2.第一个实验(1)活力论在大多数历史中,没有必要考虑生命是如何诞生的,因为答案“显而易见”。在19世纪前,大多数人相信“活力论”。这是关于生命本质的一种唯心主义学说,它认为生物体与非生物体的区别就在于前者体内有一种特殊的生命“活力”,它控制和规定着生物的全部生命活动和特性,而不受自然规律的支配。它主张有某种特殊的非物质的因素支配生物体的活动。当时,科学家们已经发现生命中几种看似比较独特的物质,比如尿素。它是在尿液中发现的,1799年被分离出来。尿素只是其中之一,当时的人们认为只有活体生物能够产生这些化学物质,或许正是它们为生命注入了能量,让生物变得与众不同。但是1828年,德国化学家弗雷德里希·维勒从普通化学物质氰酸铵中提炼出尿素,而氰酸铵显然与活着的东西没有任何关系。此后,许多科学家追随维勒的脚步,发现生命体内的化学物质全部可从简单的化学物质中提炼出来,而这些物质与生命没有任何关系。这些实验终结了“活力论”作为科学假设的特权,但人们很难就此割舍它。对于许多人来说,生命中的化学物质“没啥特别”就好像剥夺了生命的魔力,让我们与纯粹的机器没什么两样。为此,英国生物化学家本杰明·摩尔(BenjaminMoore)又于1913年提出“生物能源”理论,其本质上依然是“活力论”,只是改了不同的名字。如今,“活力论”或“生物能源”理论开始出现在科幻电影中,比如某人的“生命能源”可以爆发,也可以耗尽。尽管这些让人感觉起来很有科技范儿,但实际上其理论早已经过时。(2)进化论19世纪,查尔斯·达尔文(CharlesDarwin)等人提出的进化论取得巨大突破。达尔文在1859年《物种起源》中阐述了自己的理论,并解释了拥有共同祖先的生物差异如此之大的原因。进化论认为,生命并非神明创造的,他们都是数亿年前原始生物的后裔,拥有共同的祖先。达尔文与进化论达尔文的理论在当时引发巨大争议,因为其与《圣经》相违背。此外,达尔文的理论没有说明生命是如何诞生的,但他曾在给朋友的私信中提及:如果有合适的水体,里面充满了简单的有机化合物,并有阳光照耀。某些化合物可能互相结合,形成类似生命的物质,比如蛋白质,然后开始不断进化,变得越来越复杂。这是个粗略的想法,但却成为生起源的首个假设基础。前苏联生物化学家亚历山大·欧帕林(AlexanderOparin)曾于1924年发表《生命起源》一书。他在书中假设了生命诞生的过程,与达尔文的“池塘论”不谋而合。欧帕林想象地球形成时的形态:表面极度炎热,岩石从空中砸下,不断对地球进行撞击。其中,一块半融化的岩石含有大量化学物质,包括许多基于碳的成分。最后,地球冷却下来,水蒸气也凝结成液态水,第一场雨水降临在地球上。在地球上出现海洋之前,它非常炎热,且富含碳基化合物。现在两件事可能发生。第一,各种化合物互相发生反应,形成许多新的化合物,有些则非常复杂。欧帕林认为,分子是生命出现的关键,比如糖和氨基酸等,它们都可以在地球的水中形成。第二,有些化学物质开始形成微观结构。许多有机化合物不溶于水,比如油会漂浮于水面上。这些化合物与水接触时可形成球形“团聚体”,厚度可达0.01厘米。如果你在显微镜下看这些团聚体,会发现它们的行为很像活细胞。它们会成长和改变形状,有时候还可一分为二。它们可从周围水中吸取化学物质,为此看似生命的化学物质可浓缩在其中。欧帕林认为,团聚体就是现代细胞的祖先。1929年,英国生物学家霍尔丹(J.B.S.Haldane)提出类似理论。霍尔丹对进化论做出过巨大贡献,将达尔文的观点与新兴遗传学结合起来。就像欧帕林那样,霍尔丹认为有机化合物会在水中形成。他认为原始海洋会经历“热稀汤”的阶段,首个生命体或半生命体会形成,并被封闭在“油膜”中。霍尔丹这些理论告诉我们,生物是由纯粹的化学物质形成的,而非神明或“生命力量”创造的。生命在原始有机化学汤中形成的观点,被称为欧帕林-霍尔丹假设。这种假设是令人信服的,但却没有实验证据支持它,这种情况持续了20多年,直到哈罗德·尤里(HaroldUrey)开始对生命起源发生兴趣。

(3)生命起源实验尤里曾获得1934年诺贝尔化学奖,二战期间参加过曼哈顿计划,为原子弹核心收集不稳定的铀-235。尤里还对外太空化学产生兴趣,特别想知道太阳系形成时的场景。有一天,他在讲课时指出,地球最初形成时,大气层中可能根本没有氧气。这可能为欧帕林-霍尔丹的原始汤形成提供了理想条件,因为脆弱的化学物质在与氧气接触时可能被毁掉。哈罗德·尤里博士生斯坦利·米勒(StanleyMiller)听了尤里的课,后来提议与尤里共同验证这个想法。为此,1952年,米勒开始了最著名的生命起源实验。实验设置很简单,米勒联通了4个玻璃瓶,然后让地球早期存在的4种化学物质在里面循环,包括沸水、氢气、氨以及甲烷。他对这些气体进行反复电击,以模拟闪电袭击,地球形成时这种现象可能时有发生。米勒发现,第一天后瓶子里的水变成了粉红色,一周后液体变成深红色,浑浊不堪。显然,化学物质混合形成了新的东西。米勒分析混合物后发现,它含有2个氨基酸,分别是甘氨酸和丙氨酸。氨基酸常被称为生命的基石,它们用于形成蛋白质,以控制我们体内的大部分生物化学过程。米勒从无到有创造了生命诞生所需的两种最重要成分。这个实验也被称为米勒-尤里实验。米勒-尤里实验的装置示意图在此之后,其他科学家开始寻找凭空制造简单生物分子的方法,解决生命起源之谜的方法似乎越来越近。然而,生命显然远比人类想象的更加复杂。活细胞不仅仅由化学物质组成,它们就像复杂的小机器。突然,寻找生命起源成了远比科学家预期的更大挑战。

3.伟大的发现(1)解密DNA到20世纪50年代初期,科学家们已经摆脱了神创论,开始探索生命在早期地球上自发形成的可能性。感谢米勒的实验,科学家们搞清楚了基因的构成。当时,科学家们已经发现了许多生物分子,包括糖、脂肪、蛋白质以及脱氧核糖核酸(即DNA)。今天,我们认为DNA上携带着基因感觉理所当然,但在20世纪50年代却令生物学家感到震惊。蛋白质非常复杂,为此科学家们以为它们就是基因。直到卡内基研究所的阿尔弗雷德·赫希(AlfredHershey)和玛莎·却斯(MarthaChase)提出反驳证据。他们研究只含有DNA和蛋白质的病毒,发现关键DNA可进入细菌内部,而蛋白质却留在外面。显然,DNA才是真正的遗传物质。赫希与却斯的发现引发了疯狂竞赛,科学家们争相解读DNA结构及其秘密。第二年,剑桥大学的弗朗西斯·克里克(FrancisCrick)与詹姆斯·沃特森(JamesWatson)取得成功。解密DNA结构被称为20世纪最伟大的科学发现之一,也重塑了寻找生命起源的方法,揭示出隐藏在活细胞内部令人难以置信的复杂性。弗朗西斯·克里克与詹姆斯·沃特森克里克与沃特森意识到,DNA是双螺旋结构,就像扭曲成螺旋的梯子,梯子的两极由名为核苷酸的分子构成。这种结构解释了细胞复制DNA的方式。换句话说,它解释了父母如何复制自己的基因,并将它们传递给后代。更关键的是,双螺旋结构可以“解压”,从而暴露了基因代码。基因代码由A、T、C、G等基因碱基构成,正常情况下,它们都被锁定在梯子的梯阶上。每个链被用作模本,重新创造另一个副本。利用这种机制,自从生命诞生以来,基因就可从父母传递给后代。你的基因也来自祖先细菌,利用克里克和沃特森发现的机制不断复制自己。在随后几年中,生物化学家们开始寻找DNA上到底携带者哪些信息,活细胞如何使用这些信息。揭开生命最深处的秘密首次如此之近。(2)解密RNA然而,发现NDA还仅仅是个开始。DNA可以告诉你细胞如何制造蛋白质,这种分子可以执行许多必要任务。没有蛋白质,你就无法消化食物,你的心脏会停止跳动,你也无法呼吸。但是利用DNA制造蛋白质的过程是非常复杂的。对任何想要解释生命起源的人来说,这都是个大问题,因为很难想象有什么东西一开始就这么复杂。每个蛋白质实际上是氨基酸按照特定顺序串成的长链。氨基酸的序列决定了蛋白质的三维形状,以及它的功用。信息被编码入DNA碱基序列中。因此,当细胞需要特别的蛋白质时,它会读取DNA中的相关基因,以便获得氨基酸序列。DNA非常宝贵,因此细胞喜欢将它包起来以确保安全。这样,它们可以复制DNA信息到另一种名为RNA的短分子上。如果DNA是图书,RNA就是潦草书写着关键信息的废纸。RNA与DNA很相似,但前者仅有一条线。最后,将RNA内的信息转给蛋白质的过程发生在巨大的分子中,它被称为核糖体。这个过程在每个活细胞,甚至最简单的细菌中发生。对于需要进食和呼吸的生命来说至关重要。任何对生命起源的解释都必须搞清楚DNA、RNA以及核糖体蛋白质之间的关系。现在看来,欧帕林与霍尔丹的想法似乎显得过于天真,而米勒的实验也只是探索生命诞生漫长道路的第一步。迈出生命诞生探索第二步的人是英国化学家莱斯利·奥格尔(LeslieOrgel),在克里克的支持下,奥格尔于1968年提出自己的理论,他认为首个地球生命没有蛋白质或DNA,全部由RNA构成。为此,原始RNA分子应该具备多种用途,比如复制自己。生命起源自RNA产生了巨大的影响力,但也触发了持续至今天的科学大战。奥格尔发现了生命最关键的特征之一,那就是自我复制。在某种意义上说,他不仅描绘了生命最初如何构成,还阐述了生命到底是什么。许多生物学家都支持奥格尔的“复制第一”理论。在达尔文的进化论中,创造后代的能力绝对是核心,生物“获胜”的唯一方式就是留下大量后代。但生命的其他特征也同样重要,其中最明显的就是新陈代谢,即从周围环境中提取能量,并利用其维持生存的能力。对于许多生物学家来说,新陈代谢肯定是生命的原始特征,复制是随后出现的。从20世纪60年代开始,研究生命起源的科学家分为两大阵营:新陈代谢第一VS基因第一。与此同时,第三阵营认为容纳关键分子的容器最为重要,也就是说,无论是新陈代谢能力还是基因,都需要细胞。这三种观点都流传下来,许多科学家至今争论不休。然而20世纪80年代,惊人的发现似乎证实了奥格尔“生命起源自RNA”的理论。4.寻找首个复制品(1)RNA酶发现当时,科学家们认为RNA是所有生命的起源,特别是RNA具备许多DNA不具备的能力。RNA属于单链分子,不像双链DNA那样僵化,而是可以折叠成不同的形状。类似折纸的RNA看起来与蛋白质的行为非常相似,蛋白质也是长链结构,并有氨基酸而非核苷酸构成,这让它们可以构建更精细的结构。这是蛋白质具备惊人能力的关键,有些蛋白质具备加速或催化化学反应的能力,它们被称为酶。我们的内脏中有很多酶,它们可将食物的复杂分子分解为简单分子,比如细胞可利用的糖。没有酶,你就无法生存。但是奥格尔对克里克的理论存在疑问:如果RNA能像蛋白质那样折叠,或许它能形成酶。如果这是真的,RNA就可以成为活分子的起源,可以像DNA那样储存信息,像蛋白质那样催化化学反应。但这纯粹是理论,此后10年都没有找到任何证据。直到20世纪90年代,专注于RNA研究的美国生物化学家托马斯·切赫(ThomasCech)与同事研究名为Tetrahymenathermophila的单细胞生物时,发现其细胞机制中包括RNA链,且RNA链的特定部分与其他部分分离,就好像某个部分被剪刀剪下。当切赫等人移除所有可能充当分子剪刀的酶和其他分子时,RNA依然保持着这个特性。为此,他们发现了首个RNA酶,即可将自己从RNA链上剪下的一小段RNA。第二年,其他科学家发现第二种RNA酶,即核酶。

托马斯·切赫连续发现两种RNA酶显示,还有更多的RNA酶存在,从而说明生命起源自RNA十分可信。1986年,哈佛大学物理学家沃尔特·吉尔博特(WalterGilbert)总结称,生命起源自RNA世界。他认为,在进化的第一阶段,在核苷酸汤中,许多具有催化活性能力的RNA分子开始自我组装。(网易科学)通过切割和粘贴不同的RNA片段,RNA分子可以创造出更有用的序列。最终,它们发现制造蛋白质和蛋白质酶的方式,从而催生了我们今天看到的生命。(2)RNA世界假说2000年时,RNA世界假说获得更确凿的证据支持。花费30年时间研究活细胞分子结构的托马斯·施泰茨解开了核糖体的结构。每个活细胞都有核糖体,这种巨大的分子可从RNA中读取指令,串联氨基酸形成蛋白质。细胞中的核糖体构建了我们身体的大部分,而RNA才是核糖体的催化核心。这个发现非常重要,因为核糖体是生命的基础。RNA世界假设的支持者们对此狂喜,施泰茨也因此获得2009年诺贝尔奖。但此后,各种怀疑纷至沓来。核糖体RNA世界假说开始就存在2个问题。RNA真的能够自己执行所有生命功能吗?它在早期地球上能够形成吗?自从吉尔博特提出RNA世界假说以后的30年间,我们依然没有找到确凿证据,可以证明RNA能够做到理论上的所有事情。举例来说,如果生命始于RNA分子,RNA必须拥有自我复制的能力。但是没人知道RNA能自我复制,DNA也不行。它们都需要许多酶和其他分子帮忙才能复制自己。为此,20世纪80年代末期,少数生物学家开始尝试复制RNA,哈佛医学院的杰克·索斯塔克(JackSzostak)就是其中之一。切赫曾于1988年发现一种RNA酶,它可以建立10个核苷酸长度的短RNA分子。索斯塔克对切赫发现的RNA酶非常痴迷,为此他希望在实验室中发现新酶的新特性。索斯塔克发现酶能让反应速度提高700万倍,RNA酶的确具有强大的能力。但这些酶依然无法复制自己。杰克·索斯塔克此后,索斯塔克的学生大卫·巴特尔发现名为R18的RNA酶,它可以根据现有模板在RNA链上增加新的核苷酸。也就是说,它不是随机增加核苷酸,而是可精确复制RNA链序列。尽管这依然不属于自我复制体,但已经十分接近。R18由189个核苷酸组成,可以添加11个核苷酸,意味着其链可延长6%。经过调整后,它可能会复制出与本身同样长的核苷酸链。2011年,剑桥分子生物实验室的菲利普·霍利格尔创造出改良版R18,并取名tC19Z,它最多可以复制95个核苷酸序列,相当于其自身长度的48%。尽管比R18多,但依然未达到100%。随后,美国加州斯克里普斯研究所的杰拉德·乔伊斯与特雷西·林肯创造出可间接复制自己的RNA酶。他们的酶可将两小段RNA连起来创造出第二种酶,它将另外两段RNA连起来创造出原始酶。这个过程可无限循环。但只有被给于正确的RNA链时,这种酶才起作用。对于许多怀疑RNA世界假说的科学家来说,缺少可自我复制的RNA是其致命短板。RNA似乎无法承担起启动生命的重任。而化学家们无法凭空制造出RNA,也重创了这种假设。但RNA已经证明,它的形成非常困难。问题是糖和碱基总是各自保持独立,固执地不愿意连接起来。(3)发现PNA20世纪90年代初,生物学家们开始怀疑RNA世界假说的正确性。或许地球早期存在其他种类的分子,它们比RNA更简单,可以在原始汤中自我组装,并复制自己。这可能是生命诞生的初原,其后才产生了RNA、DNA以及其他分子。1991年,哥本哈根大学的彼得·尼尔森(PeterNielsen)提出了原始复制者的候选者,其本质上是被彻底修改的DNA。尼尔森认为其DNA中依然保持着相同的碱基,但用聚酰胺代替糖成为分子的主体。他称新的分子为聚酰胺核酸(或肽核酸),简称PNA。PNA

自然界从未发现过PNA,但其行为很像DNA。PNA链甚至可取代DNA分子链,只要碱基对正确即可。此外,PNA也拥有类似DNA的双螺旋结构。米勒感到非常好奇,他对RNA世界假说深表怀疑,并认为PNA才是更可信的第一种遗传物质。米勒重复他的经典实验,但这次他使用了甲烷、氮、氨和水,获得了PNA的聚酰胺主链。这表明,与RNA不同,PNA在地球早期很容易形成。此后,其他化学家也提出了自己的替代核酸。2000年时,埃尔伯特·厄希恩莫瑟发现了苏糖核酸(TNA),它基本上可称为DNA,只是主链中没有糖。TNA链可以形成双螺旋,信息科在RNA和TNA之间复制传递。此外,TNA还能折叠成复杂形状,甚至形成蛋白质。这显示,TNA可以像RNA那样充当酶。2005年,埃里克·梅格斯发现乙二醇核酸(GRA),也可以形成螺旋结构。这些替代核酸在自然界中没有发现过,为此如果生命诞生时用过它们,在某个时刻也抛弃了它们,进而使用RNA和DNA。这可能是真的,但依然没有证据。到2000年左右,RNA世界假说的支持者陷入左右为难状态。一方面,RNA酶的确存在,包括生物机制中最重要的部分核糖体。但RNA没有复制能力,没人能搞清楚RNA如何在原始汤中形成。替代核酸可能解决后一个问题,但它们没有在自然界中存在的证据。5.质子的力量显然,RNA世界假说并非完全正确。与此同时,另一种理论悄然兴起,其支持者认为生命并非以RNA、DNA或任何其他基因物质开始。相反,它最初只是利用能源的机制。在生物能够繁衍前,它必须能够维持自我生存。首先,你必须获得能源,从糖等富含能源的化学物质中获取。接着,你必须利用能源制造有用的东西,比如细胞。这个利用能源的过程被称为新陈代谢,许多科学家认为它非常重要,可能是生命需要做的第一件事。(1)代谢周期那么,这些只能新陈代谢的生物看起来什么样?最有影响力的假设是20世纪80年代末的德国律师衮特尔提出的,他认为地球上的第一个生命与我们已知的任何东西都不同,它并非由细胞构成,也没有酶、DNA或RNA。当热水从火山中流出时,水中富含火山气体,比如氨。当这些水流经岩石时,化学反应开始发生,特别是水中的金属有助于简单的有机化合物融合壮大。转折点是第一个代谢周期的产生。在这个过程中,一种化学物质被转化成一系列其他化学物质,直到最终原始化学物质再次出现。整个过程中,整个系统都需要吸收能量以推动周期循环,进而启动其他东西。这些东西形成了现代有机物,比如DNA、细胞以及大脑等。尽管这些代谢周期听起来不像生命,但衮特尔为其命名为“前体生物”。它们是生物的核心,因为细胞本质上就是微观的化学处理厂,不断将一种化学物质转变成其他物质。代谢周期看似没有生命,但它们却是生命的基础。衮特尔不断完善自己的理论,并吸引了许多支持者。但他的设想都是理论性的,需要证据支持。幸运的是,他找到了证据。(2)热液喷口1977年,俄勒冈州立大学科学家杰克·科利斯领导的团队潜入到东太平洋2500米深海中,测试加拉帕戈斯热点,那里有高耸的岩石脊(即活火山)从海底升起。科利斯发现,这些岩石脊本质上与热泉没什么区别。富含化学物质的滚烫热水从海底冒出来,通过岩石中的孔洞喷射出来。令人感到惊奇的是,这些“热液喷口”中竟然生存着许多奇怪的动物,包括巨大的蛤蚌、贻贝、冒贝以及管状蠕虫等,此外还有大量细菌。这些生物都依靠热液喷口中的能量生存。热液喷口1981年,科利斯提出假设,40多亿年前的地球早期也存在类似的热液喷口,它们就是生命最早诞生的地方。他认为,这些热液喷口可能含有各种化学物质,每个喷口实际上都是某种原始汤。当热水从岩石中流出时,热量与压力会促使简单的有机化合物融合为更复杂的化合物,比如氨基酸、核苷酸以及糖等。在接近水温不太热的海水处,这些化合物开始串成链,形成碳水化合物、蛋白质以及类似DNA的核苷酸。随着这些热水不断冷却,分子就会形成简单的细胞。但米勒认为热液喷口温度太高,极端高温可以促使氨基酸等化学物质形成,但也会毁掉它们。糖等关键成分最多也仅会存在数秒时间。此外,这些简单的分子不太可能串成链状,因为周围的水会立即让它们分解。但迈克·拉塞尔支持科利斯的假设,认为热液喷口是衮特尔假设“前体生物”诞生的最理想环境,这促使拉塞尔提出了一个被广泛接受的生命起源理论。(3)发现质子20世纪80年代,拉塞尔发现了古热液喷口的化石证据,它的温度在150摄氏度以下,生命分子可以比米勒假设的存在时间更长。此外,这些冷却的喷口中含有许多奇怪的东西,比如直径1毫米的黄铁矿管道。黄铁矿主要由铁和硫组成,可以形成气泡。拉塞尔认为,第一个复杂的有机分子就是在简单的硫铁矿结构中形成的。拉塞尔拉塞尔将自己的设想与衮特尔和科利斯的假设相结合,他认为深海中的热液喷口足以帮助形成黄铁矿结构,并将“前体生物”包裹其中。如果拉塞尔的设想是对的,生命应该起源自海底,新陈代谢也会首先出现。此外,他还尝试解释了最初诞生的生命如何获得能量。换言之,他提出了新陈代谢原理。此后,生物化学家彼得·米切尔终于搞清楚了生物如何从食物中获得能量,也就是我们如何维持生存。米切尔知道,所有细胞都将能量储存在相同的分子中,即三磷酸腺苷(ATP)。它由腺苷和三个磷酸基组成。添加第三个磷酸基需要耗费许多能量,然后能量被锁定在ATP中。当细胞需要能量时,ATP就会断裂分解变成二磷酸腺苷(ADP),释放出储存的能量。彼得·米切尔米切尔想要知道细胞最初如何制造ATP,如何将足够能量存入ADP,以便于吸附第三个磷酸基?米切尔此前已经知道,酶可让ATP留在细胞膜上。他假设,细胞会泵出名为质子的带电粒子穿过膜。因此,膜的一面拥有大量质子,而另一面几乎没有。质子会尝试回穿,以保持两边质子数量平衡。但它们唯一能穿过的就是酶,这种质子流给了酶制造ATP的能量。现在我们知道,米切尔确定的过程正是地球上所有生物所依赖的。它正发生在我们的细胞中,就像DNA那样,它也是生命的基础。此外,米切尔还提出质子梯度的概念,所有细胞都需要质子梯度储存能量。现代细胞可通过泵出质子穿过膜产生梯度,但这包含复杂的分子机制,它不可能是突然出现的。为此,拉塞尔又提出新的理论,即生命肯定是在存在自然质子梯度的地方形成的,比如热液喷口。但是这种喷口应该非常特别。因为地球刚刚形成时,海水还是酸性的,酸水中漂浮着大量质子。要想产生质子梯度,喷口中涌出的水中所含质子必须非常少,而且必须呈碱性。科利斯提出的热液喷口不合适,不仅因为它们太热,还因为它们时酸性的。直到2000年事,华盛顿大学的黛博拉·凯利发现了第一批碱性喷口。(4)迷失之城在大西洋海底一处山岭上,凯利发现了许多热液喷口,她称之为“迷失之城”。它们与科利斯的发现不同,这些喷口中流出的水温仅在40到75度之间,呈轻度碱性。富含碳酸盐矿物的水聚集成陡峭的白色“烟囱”从海底喷出,里面含有大量微生物。这些碱性热液喷口为拉塞尔的理论提供了完美支持,他认为“迷失之城”这样的喷口就是生命诞生之地。但作为地质学家,凯利不太了解生物细胞,因此也无法让她的理论更有说服力。为此,拉塞尔与美国生物学家威廉·马丁合作,利用凯利的设想改进自己早期的理论。他认为碱性热液喷口附近的岩石孔洞中积满了水,这些小口袋就像细胞。每个口袋中都含有必须的化学物质,包括黄铁矿等。与喷口中出现的自然质子梯度相结合,它们就成了新陈代谢开始的理想之地。当生命从热水中获得化学能后,就可以制造RNA等分子。最终,生命创造出自己的膜,成为真正的细胞,并从岩石口袋逃到海水中。这种理论现在被视为生命起源最可信的假说之一。2016年7月份,马丁发布名为“最后共同祖先(LUCA)”的研究报告,为其提供进一步支持。报告中称,这种生物出现在数十亿年前,现在所有生命都是它的后裔。我们现在还未找到LUCA存在的直接化石证据,但通过研究今天的微生物,我们可以猜测它们的行为与外貌特征。马丁检查了1930种现代微生物的DNA,并确认了它们共有的355个基因。由此显示,这些基因可能都是代代传下来的,所有微生物都拥有共同的祖先。此外,LUCA似乎已经适应了甲烷等化学物质的存在,这暗示它可能诞生于类似活火山的环境中,比如热液喷口。尽管如此,RNA世界假设支持者认为,热液喷口理论存在2个问题,第一个问题可能已被解决,而第二个问题更致命。第一个问题是,拉塞尔与马丁的假设没有任何实验证据支持。尽管他们提出了生命诞生的过程,但在实验室中却没有复制过。支持“复制第一”理论的人,不断提供新的实验数据,但支持“代谢第一”的人却没有。但马丁的同事尼克·拉尼已经建造“生命起源反应堆”,模拟碱性热液喷口进行试验,希望观察到代谢周期,甚至是RNA之类的分子。第二个问题是,这些喷口都位于深海中。正如米勒指出的那样,如果没有酶的帮助,RNA和蛋白质等长链分子无法在水中形成。对于许多研究人员来说,这是个无可辩驳的事实,因为所有这些化学分子与水不相容。但在过去10年间,第三种方法脱颖而出,并带动一系列非凡的实验,即凭空创造出完整细胞。6.如何创造细胞地球上的所有生物都由细胞组成,每个细胞基本上是个软球,有个牢固的外壁或膜保护。细胞中的某种成分将生命所需各种成分结合起来。如果细胞外壁被撕裂,内部物质就会流出来,细胞就会死亡。细胞外壁同样重要,有些生命起源科学技术认为,它可能是首先出现的东西。他们认为“基因第一”和“代谢第一”理论都是错误的,反而提出“区隔第一”的假设。(1)区隔第一意大利科学家皮埃尔·路易吉·路易斯(PierLuigiLuisi)就是代表人物。他的推理很简单,但却无可辩驳。除非你先有一个容器可容纳所有分子,否则在化学物质泛滥的环境中,怎么可能确保RNA自我复制和新陈代谢?如果你接受这种说法,那么生命诞生只有一种方式。在地球早期,少数原材料物质必须形成粗细胞或原细胞(protocell)。这个挑战促使科学家在实验室中创造出简单的活细胞。路易斯重新研究欧帕林的假设,后者曾认为特定化学物质形成名为“团聚体”的气泡,其核心中包含着其他物质。他认为,这些团聚体就是最初的原细胞。任何脂肪或油性物质都会在水中形成气泡或膜,这些化学物质被统称为脂类,它们形成生命的理论被称为“脂类世界”。但是仅形成气泡还不够,这些气泡必须保持稳定,且能够分裂形成“子气泡”。它们还需要某些能控制物质进出的能力,毕竟它们还没有现代细胞用于实现这些功能的蛋白质。尽管提出了理论,但路易斯却未能提供令人信服的实验证据。1994年,路易斯提出首个原细胞可能含有RNA,而且这个RNA肯定能在原细胞内进行复制。这是个大胆的假设,意味着他抛弃了纯粹的“区隔第一”理论。路易斯认为,细胞拥有外壁,但内部没有基因,它无法做任何事。它可能分裂为子细胞,但无法遗传有关自己的任何信息。要想含有更多基因,它必须进化,变得更为复杂。(网易科学)这个理论很快获得索斯塔克的支持,尽管后者支持RNA世界假说。索斯塔克说:“我们最终意识到,生命诞生需要两个第一,而细胞既有基因体系又有区隔体系。”路易斯与索斯塔克认为,通过将能够复制的RNA放在简单的脂肪气泡中,他们可凭空创造简单的活细胞。索斯塔克决定对这个理论进行试验,2年后取得巨大成功。他们对囊泡进行试验,它呈球形团块,外部拥有2层脂肪酸,内部则是液态。为了找到加速创造囊泡的方法,他们决定向其中添加名为蒙脱土的黏土颗粒。这让囊泡形成加速了100倍,黏土表面充当催化剂,就像酶那样。此外,囊泡可吸收蒙脱土粒子和黏土表面的RNA链,这些原细胞现在有了基因和催化剂。(2)神奇的黏土添加蒙脱土的决定并非心血来潮。数十年的研究显示,蒙脱土可能对生命诞生非常重要。蒙脱土就是常见的黏土,当火山灰分解后就会形成。由于地球早期有很多火山,蒙脱土非常丰富。1986年,化学家詹姆斯·弗里斯(JamesFerris)证明,蒙脱土可充当催化剂,帮助有机分子形成。他还发现蒙脱土可加速小RNA的形成。弗里斯由此推测,这种看似普通的黏土可能是生命的起源之地。索斯塔克也利用蒙脱土帮助制造原细胞。1年后,他发现原细胞可自行生长。随着越来越多RNA分子被包裹进原细胞,外壁变得越来越紧,原细胞好像要爆裂开似的。为了应对这种情况,原细胞会吸收更多脂肪酸,将它们补充到外壁中,让其膨胀到更大体型,以缓解内部膨胀。更重要的是,原细胞还从其他包含较少RNA的原细胞处获得脂肪酸,导致其他原细胞缩小。这意味着,原细胞之间存在竞争,获得更多RNA者获胜。(网易科学)这显示,某种令人印象深刻的事情发生了。如果原细胞可以成长,或许它们也能分裂。索斯塔克的原细胞能自我复制吗?最初,索斯塔克证明原细胞可以分裂。可以通过挤压原细胞的孔洞,将里面的物质挤出来,后者形成子原细胞。但是这种方法也存在缺陷,因为原细胞会在这个过程中损失很多信息。还有很多方法可帮助囊泡分裂,比如强大的水流可形成巨大力量,可以强迫囊泡分开。2009年,索斯塔克发现解决方法,创造出更为复杂的原细胞,就像圆葱那样的多层结构。尽管听起来十分复杂,实际上这种原细胞制造很简单。囊泡分裂通过喂食更多脂肪酸,原细胞会长大变形,延伸成类似绳子的长链。当原细胞足够长时,只需很小的力量就可让它分裂成数十个子细胞。每个子细胞都含有来自母体原细胞的RNA,且很少有RNA丢失。此外,原细胞可以重复这个过程,子细胞长大后,也会自我分裂。索斯塔克还发现许多方法可促使原细胞分裂,这方面的问题似乎已经解决。但原细胞的能力依然不够。为了证明自己创造了地球上的首个生命,肖斯塔克需要原细胞中的RNA能够复制自己。(网易科学)这并不容易,因为经过数十年尝试,依然没人能制造出能自我复制的RNA。为此,索斯塔克重新了解奥格尔的RNA世界假说,并在其中发现了珍贵的线索。奥格尔在20世纪70年代和80年代研究如何复制RNA链。从本质上说,这可能非常简单。利用松散的核苷酸组成单链RNA,然后将其与其他单链RNA互补。举例来说,CGC链可与GCG链互补。如果你重复这个过程2次,就可以得到原始CGC链的副本。奥格尔发现,在特定情况下,RNA链无需酶的帮助就可以自我复制,这相当于最早的生命复制其基因。到1987年,奥格尔已经可以利用14个核苷酸的RNA链,创造与其互补的RNA链。他没有尝试创造更长的RNA链,但这已经足够为索斯塔克提供灵感。索斯塔克与其学生卡塔尔兹娜·亚达马拉试图在原细胞中重复这个过程。他们发现,这种反应需要镁的帮助,可是镁会毁掉原细胞。但他们找到更简单方法,利用所有活细胞中都有的柠檬酸盐。索斯塔克将柠檬酸盐附着在镁上以保护原细胞,同时支持模板复制。换言之,他们实现了路易斯1994年提出的假设,在脂肪酸囊泡中对RNA进行复制。经过10多年研究,索斯塔克等人创造出了拥有自己基因的原细胞,它同时可从外界吸收有用的分子。这种原细胞可成长和分裂,甚至互相竞争。RNA可以在内部复制。无论从哪个角度来看,它们都与生命惊人的相似。此外,这种原细胞具有惊人的恢复性,能在100度高温中存活。在促使更多人相信,原细胞与最早的生命十分相似。最初,这些生命需要忍受流星不断撞击带来的酷热。索斯塔克没有专注于研究“复制第一”或“区隔第一”理论,而是找到两者同时发生的方法。这也激发科学家们利用统一方法寻找生命起源,即尝试创造出生命所需的所有功能,这种“一切第一”的假设积累了丰富的证据,可以解决现有理论的所有问题。7.伟大的统一2009年,RNA世界假说的支持者遇到一个巨大挑战,他们无法在地球早期环境中制造出核苷酸,也就是RNA的构建块。这让人们怀疑,最早的生命或许并非基于RNA诞生的。自从20世纪80年代,约翰·苏瑟兰德就开始思考这个问题。幸运的是,苏瑟兰德找到了替代方案,并提出有关生命起源的新理论,即生命的所有关键成分都是同时形成的。(1)细胞整体诞生每个RNA核苷酸都是由糖、碱基以及磷酸形成的。但想要吸引糖和碱基加入其中,几乎是不可能的,分子会产生错误的形状。为此,苏瑟兰德尝试完全不同的物质。最终,他的团队看中了5个简单的分子,包括不同的糖和氨基氰。苏瑟兰德等人将这些化学物质进行一系列反应,最终得到4个RNA核苷酸中的2个,它们没有独立的糖或碱基。许多人将苏瑟兰德的发现视为RNA世界假说的延伸,但他自己不这样看。RNA世界假说认为,最早的生物由RNA控制生命的所有功能。但苏瑟兰德认为,RNA的确参与了许多反应,但它并非终极目标。苏瑟兰德的目标是凭空创造能够自我组装的完整细胞。他的第一个线索就是核苷酸合成过程中1个奇怪细节,最初看似偶然出现的。苏瑟兰德实验的最后一步,是将磷酸结合到核苷酸上。但他发现最好从一开始就将磷酸混合其中,因为这会加速早期反应。苏瑟兰德认为,这种混乱是好事。混合磷酸后会让环境变得更复杂,也可促使所有生命成分同时产生。在地球早期,肯定有数十种乃至数百种化学物质漂浮在一起。这些混合物中的确应该含有生物分子,但还有大量其他非生物化合物。苏瑟兰德认为米勒的设置过于混乱,会导致好的化学物质在混合物中消失。为此,他试图找到“金发姑娘化学物质”,即混合物需要足够复杂,包括所有生命所需化合物,然后紧密结合起来。换言之,40多亿年前,地球上有个池塘,安静了无数年后才出现合适的化学物质混合物。然后可能在几分钟内,首个细胞就会诞生。这就像中世纪的炼金术那样神奇,但苏瑟兰德有确凿证据。自从2009年以来,他已经用同样的化学物质制造出2种RNA核苷酸,它们还可制造许多生命分子。下一步就是制造更多RNA核苷酸,但他还没有实现这个目标。2010年,苏瑟兰德创造出关系密切的分子,它们可能转变成核苷酸。2013年,他又创造出氨基酸的前体。这次,他添加了氰化铜以催化反应。2015年,他用类似方法制造出脂类前体,这些分子会构成细胞壁。如果苏瑟兰德的发现是对的,那么我们过去40多年对生命起源的研究就都错了。自从细胞的复杂性被解开以来,科学家们始终致力于这样的假设,即第一个细胞肯定是逐渐构建完善的。比如奥格尔认为首先出现RNA,然后慢慢添加其他生命成分。但苏瑟兰德认为,最好的方式就是所有生命成分同时形成。这种理论的挑战在于,同时制造各种成分过于复杂。索斯塔克现在怀疑,大多数制造生命分子、或在细胞内组装它们的尝试之所以会失败,可能源于共同的原因,那就是这些实验“太干净了”。科学家们只使用少量他们感兴趣的化学物质,而排除了其他地球早期可能存在的物质。但苏瑟兰德的实验显示,通过添加更多化学物质,可以产生更复杂的现象。2005年,索斯塔克亲自实验这个想法。他试图让原细胞成为RNA酶的宿主。这种酶需要镁,但后者可能毁掉原细胞的膜。对此,索斯塔克的解决方法很简单,不用纯脂肪酸制作囊泡,而是用不同物质构建。这些新的、不够纯的囊泡可以对抗镁的影响,这意味着它们可以担任RNA酶的宿主。此外,索斯塔克宣称,他的第一个基因可能也接受了这种混乱。(2)大杂烩世界现代生物使用纯DNA携带它们的基因,但纯DNA最初可能并不存在。它们可能是RNA核苷酸与DNA核苷酸的混合体。2012年,索斯塔克证明,这种混合体可以构成“镶嵌”分子,其外貌和行为都很像RNA。这些RNA与DNA混合链甚至可折叠。这表明,最早的生物是否能制造纯RNA或纯DNA都不重要,它们可以使用混合版的RNA,甚至混有TNA或PNA的核苷酸。这不是RNA世界,而是“大杂烩世界”。这些研究显示,制造最早的细胞似乎并不太困难。细胞的确拥有复杂的机制,但事实证明,它们可以吸收任何东西维持自身生存,虽然这依然不是很好。这种粗细胞似乎不太可能在地球早期生存下来。但当时没有太多竞争,也没有具有威胁性的掠食者,为此从多方面来看,它的生存环境比现在容易得多。但是苏瑟兰德和索斯塔克的理论也存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论