版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学上册必修一知识点解析【#高二#导语】由于高二开头努力,所以前面的学问确定有肯定的欠缺,这就要求自己要制定肯定的方案,更要比别人付出更多的努力,信任付出的汗水不会白白流淌的,收获总是自己的。我高二频道为你整理了《高二数学上册必修一学问点解析》,助你金榜题名!
1.高二数学上册必修一学问点解析
1.向量的基本概念
向量
既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
平行向量
方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.
若向量a、b平行,记作a∥b.
规定:0与任一向量平行.
相等向量
长度相等且方向相同的向量叫做相等向量.
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不行.
②向量a,b相等记作a=b.
③零向量都相等.
④任何两个相等的非零向量,都可用同一有向线段表示,但特殊要留意向量相等与有向线段的起点无关.
2.对于向量概念需留意
(1)向量是区分于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以推断它们是否相等,但向量的模可以比较大小.
(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不肯定在同一条直线上;而有向线段共线则是指线段必需在同一条直线上.
(3)由向量相等的定义可知,对于一个向量,只要不转变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.
2.高二数学上册必修一学问点解析
一、导数的应用
1.用导数讨论函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,讨论在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边削减,右边增加,则该零点处函数取微小值。学习了如何用导数讨论函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论供应的信息,从中发觉一般规律;类比推理的难点是发觉两类对象的相像特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经把握的数学学问,分析两类对象之间的关系,通过两类对象已知的相像特征得出所需要的相像特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特别到特别的推理。
三、不等式
对于含有参数的一元二次不等式解的争论
1)二次项系数:假如二次项系数含有字母,要分二次项系数是正数、零和负数三种状况进行争论。
2)不等式对应方程的根:假如一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则依据这两个根的大小进行分类争论,这时,两个根的大小关系就是分类标准,假如一元二次不等式对应的方程根不能通过因式分解的方法求出来,则依据方程的判别式进行分类争论。通过不等式练习题能够关心你更加娴熟的运用不等式的学问点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
3.高二数学上册必修一学问点解析
二线面问题
1位置关系(定义)
线在面内:有很多个公共点
线在面外:
①相交:有且只有一个公共点
②平行:没有公共点
2线面平行
①定义、
②判定定理、若a不包含于α,b包含于α,a‖b则a‖α
③性质定理、若a‖α,a包含于βα∩β=b则a‖b(线面平行→线线平行)
4.高二数学上册必修一学问点解析
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
○1(代数法)求方程的实数根;
○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
5.高二数学上册必修一学问点解析
不等式
不等式这部分学问,渗透在中学数学各个分支中,有着非常广泛的应用。因此不等式应用问题体现了肯定的综合性、敏捷多样性,对数学各部分学问融会贯穿,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围非常广泛,它始终贯串在整个中学数学之中。诸如集合问题,方程(组)的解的争论,函数单调性的讨论,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着亲密的联系,很多问题,最终都可归结为不等式的求解或证明。
学问整合
1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法亲密相关,要擅长把它们有机地联系起来,相互转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较简单的不等式化归为较简洁的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、肯定值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解亲密相关,要擅长把它们有机地联系起来,相互转化和相互变用。
3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较简单的不等式化归为较简洁的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都理工大学《机械故障诊断基础》2023-2024学年第一学期期末试卷
- 成都航空职业技术学院《数据导入与预处理应用实验》2023-2024学年第一学期期末试卷
- 2025年度民间借款合同模板(含利息计算方法)3篇
- 成都工业学院《特殊教育概论》2023-2024学年第一学期期末试卷
- 2024房地产中介公司聘用人员合同
- 2025版建材出口贸易合同标准范本3篇
- 2024年管理人才聘用合同条款
- 2025版旧机动车交易及配件销售合同范本3篇
- 急诊医学生出科小结范文(11篇)
- 贴石材施工方案
- 英语专业八级词汇表简略
- 精神病院感染管理
- 地震应急演练实施方案村委会(2篇)
- 2024时事政治试题库学生专用
- 三级合伙人制度
- 2024年湖北省黄石市黄石港区政府雇员招聘37人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 矿业施工组织设计方案
- 椎体感染的护理查房
- 产后饮食的健康宣教-课件
- 儿科案例完整-川崎病课件
- RFJ 006-2021 RFP型人防过滤吸收器制造与验收规范(暂行)
评论
0/150
提交评论